Overview

We introduce a kernel approximation strategy that enables computation of the
Gaussian process log marginal likelihood and all hyperparameter derivatives in
O(p) time. Our GRIEF kernel consists of p eigenfunctions found using a Nystrom
approximation from a dense Cartesian product grid of inducing points. By exploit-
ing algebraic properties of Kronecker and Khatri-Rao tensor products, computa-
tional complexity of the training procedure can be practically independent ot the
number of inducing points. This allows us to use arbitrarily many inducing points
to achieve a globally accurate kernel approximation, even in high-dimensional
problems. The fast likelihood evaluation enables type-I or II Bayesian inference
on large-scale datasets. We benchmark our algorithms on real-world problems
with up to two-million training points and 10* inducing points.

Code available at https://github.com/treforevans/gp grief

Eigenfunction Kernel

We approximate an exact kernel as a finite sum of eigenfunctions using a Nystrom
approximation from an inducing point set |1]. This representation is attractive since
« eigenfunctions give the most compact representation among orthogonal functions;
= the eigenfunctions live in a reproducing kernel Hilbert space;

= the approximate eigenfunctions converge in the limit of large n [2]; and

= the approximate eigenfunctions converge with many inducing points (large m),
which we will consider. This result is shown in Theorem 1 below.
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Figure: Comparison of kernel approximations using p = 12 basis functions. Exact kernel shown in black.
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We approximate an “exact” kernel k using p eigentunctions to give
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Gridded Inducing Points

To use a large m, we place inducing
points on a Cartesian grid to fill out the
input space while allowing many more in-
ducing points than training points (m »
n). The grid contains m=+m~O(10)
points along each dimension. The covari-
ance matrix then inherits the Kronecker
product (®) structure Ky y= @7, KS?U,
enabling efficient Kronecker matrix alge-
bra to be exploited [3]. For instance,

Ky = X7, KS)U storage — O(dm?)
KU’U=QAQT factoring — O(dm’)
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computational bottleneck.

Theorem 2: Linear Scaling

Scalable Gaussian Processes with Grid-Structured Eigenfunctions (GP-GRIEF)

In low-dimensions, exploiting grid-
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oreatly advantageous, however, we
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the left that complexity of MVMs

with IA{JXX increases exponentially in
d! This poor scaling poses a serious
impediment to the successful appli-
cation of the proposed approach, or

SKI [3], to high-dimensional datasets.
We next discuss how to overcome this

The product of a row-partitioned Khatri-Rao matrix Kxy = >I<§l:1 Kg?U, a Kro-

necker product matrix Q = ®§i:1 Q" and a column-partitioned Khatri-Rao ma-

trix SZ — %4 (S](f))T can be computed as follows
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where @ is the (element-wise) Hadamard product.

Using this result:

- Time complexity decreases from O(mnp) — O(dnp), and

- Storage complexity decreases from O(m?n) — O(np).

Note that we find Kx ¢y admits a row-partitioned Khatri-Rao product («) structure
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(a) Training prior covariance error. (b) Train/test joint prior covariance error.

Figure: Covariance matrix reconstruction error of GP-GRIEF outperforms competing approximation
techniques. GP-GRIEF approaches the optimal reconstruction accuracy of the black curves.

Type-I Inference in Op)

Consider the kernel parameterization k(x,z) = S widi(X)p(z). If the eigenfunc-
tions ¢; are fixed, we can compute the log marginal likelihood in O(p) and still
approximately recover a wide class of kernels. The complexity will be independent of
dataset size, and fast iterations allow type-I Bayesian inference on massive datasets.

* Training Data - = Exact Kernel
— Exact Function
A A Inducing Points

Compute grid-structured
eigenfunctions.

Choose inducing point grid. Run MCMC in O(p). Shown are

posterior samples of the kernel.

Figure: One-dimensional regression example demonstrating the GP-GRIEF type-| inference procedure in
O(p). The posterior samples of the kernel demonstrate the flexibility of this parameterization.

UCI Regression Datasets

We present performance benchmarks on large UCI regression datasets. Observe that:

- Complexity independence on m enables use of 10% inducing points on Cancer.

« GP-GRIEF-I using the developed O(p) procedure takes just 25 minutes to train
on the two-million point dataset Electric and greatly outperforms [4]. This size is
typically prohibitive for a fully Bayesian type-I approach.
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of Kyy = QAQ!, and S, € RP*™ is a sparse selection matrix. The following result
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shows why we want to use lots of inducing points (large m) since the approximate
eigenfunctions become ezxact.

Theorem 1: Eigenfunction Convergence

If the 2th eigenvalue of £ is simple and non-zero and U > X, a Nystrom approxi-
mation of the ¢th kernel eigenfunction converges in the limit of large m,
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where )\gm) e R and q(m) e R are the ith largest eigenvalue and corresponding

i
eigenvector of Ky y, respectively. qz(-n) is the kernel eigenfunction corresponding

to the ¢th largest eigenvalue, evaluated on the set X.
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(b) VFEm = 4.
RMSE = 0.47

(c) GP-GRIEF m=25,p=4.
RMSE = 0.34

Figure: Reconstruction using GP-GRIEF outperforms VFE. Both techniques use an equal number of
basis functions and have the same computational complexity. Crosses denote training point position
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and dots denote inducing point locations. In fact, GP-GRIEF matches the test error of an exact GP.

Table: Mean and standard deviation of test error and average training time from 10-fold cross
validation on UCI regression datasets. GP-GRIEF-II uses maximium likelihood estimates of the
hyperparameters for type-ll inference whereas GP-GRIEF-I uses a fully Bayesian type-| approach using
MCMC. We compare our results with Yang et al. [4] who uses the same train test splits and
approximates the same kernel using Fastfood finite basis function expansions. m is the number of
inducing points used and p is the number of eigenfunctions used.
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