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Overview

We introduce a kernel approximation strategy that enables computation of the
Gaussian process log marginal likelihood and all hyperparameter derivatives in
Oppq time. Our GRIEF kernel consists of p eigenfunctions found using a Nyström
approximation from a dense Cartesian product grid of inducing points. By exploit-
ing algebraic properties of Kronecker and Khatri-Rao tensor products, computa-
tional complexity of the training procedure can be practically independent of the
number of inducing points. This allows us to use arbitrarily many inducing points
to achieve a globally accurate kernel approximation, even in high-dimensional
problems. The fast likelihood evaluation enables type-I or II Bayesian inference
on large-scale datasets. We benchmark our algorithms on real-world problems
with up to two-million training points and 1033 inducing points.
Code available at https://github.com/treforevans/gp_grief

Eigenfunction Kernel

We approximate an exact kernel as a finite sum of eigenfunctions using a Nyström
approximation from an inducing point set [1]. This representation is attractive since
• eigenfunctions give the most compact representation among orthogonal functions;
• the eigenfunctions live in a reproducing kernel Hilbert space;
• the approximate eigenfunctions converge in the limit of large n [2]; and
• the approximate eigenfunctions converge with many inducing points (large m),

which we will consider. This result is shown in Theorem 1 below.

(a) Eigenfunction Kernel (b) FITC, x’s show 12 inducing points (c) Random Fourier Features
Figure: Comparison of kernel approximations using p “ 12 basis functions. Exact kernel shown in black.
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where X is the set of training points, U is the set of inducing points, Q,Λ P Rmˆm

are unitary and diagonal matrices, respectively, formed from the eigen-decomposition
of KU,U “ QΛQT , and Sp P Rpˆm is a sparse selection matrix. The following result
shows why we want to use lots of inducing points (large m) since the approximate
eigenfunctions become exact.

Theorem 1: Eigenfunction Convergence

If the ith eigenvalue of k is simple and non-zero and U Ą X, a Nyström approxi-
mation of the ith kernel eigenfunction converges in the limit of large m,
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where λpmqi P R and qpmqi P Rm are the ith largest eigenvalue and corresponding
eigenvector of KU,U, respectively. qpnqi is the kernel eigenfunction corresponding
to the ith largest eigenvalue, evaluated on the set X.

Gridded Inducing Points

To use a large m, we place inducing
points on a Cartesian grid to fill out the
input space while allowing many more in-
ducing points than training points (m "

n). The grid contains Ďm“ d
?
m«Op10q

points along each dimension. The covari-
ance matrix then inherits the Kronecker
product (b) structure KU,U“

Âd
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U,U,
enabling efficient Kronecker matrix alge-
bra to be exploited [3]. For instance,
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Exponential Scaling

In low-dimensions, exploiting grid-
ded inducing point structure can be
greatly advantageous, however, we
can immediately see in the block to
the left that complexity of MVMs
with ĂKX,X increases exponentially in
d! This poor scaling poses a serious
impediment to the successful appli-
cation of the proposed approach, or
SKI [3], to high-dimensional datasets.
We next discuss how to overcome this
computational bottleneck.

Theorem 2: Linear Scaling

The product of a row-partitioned Khatri-Rao matrix KX,U “ ˚d
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where d is the (element-wise) Hadamard product.

Using this result:
• Time complexity decreases from OpĎmdnpq Ñ Opdnpq, and
• Storage complexity decreases from OpĎmdnq Ñ Opnpq.
Note that we find KX,U admits a row-partitioned Khatri-Rao product (˚) structure
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and that STp can be written as a column-partitioned Khatri-Rao product matrix.
We can now estimate the kernel hyperparameters with the complexity
Opnp2

` dnp ` dm3{d
q which is practically independent of m!

(a) Test Data.
fpx, yq“ sinpxq sinpyq

(b) VFEm “ 4.
RMSE “ 0.47

(c) GP-GRIEFm“25, p“4.
RMSE “ 0.34

Figure: Reconstruction using GP-GRIEF outperforms VFE. Both techniques use an equal number of
basis functions and have the same computational complexity. Crosses denote training point positions
and dots denote inducing point locations. In fact, GP-GRIEF matches the test error of an exact GP.
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(a) Training prior covariance error.
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(b) Train/test joint prior covariance error.

Figure: Covariance matrix reconstruction error of GP-GRIEF outperforms competing approximation
techniques. GP-GRIEF approaches the optimal reconstruction accuracy of the black curves.

Type-I Inference in Oppq

Consider the kernel parameterization rkpx, zq “ řp
i“1wiφipxqφipzq. If the eigenfunc-

tions φi are fixed, we can compute the log marginal likelihood in Oppq and still
approximately recover a wide class of kernels. The complexity will be independent of
dataset size, and fast iterations allow type-I Bayesian inference on massive datasets.

Training Data

Exact Function

Inducing Points

Exact Kernel

Choose inducing point grid. Compute grid-structured
eigenfunctions.

Run MCMC in Oppq. Shown are
posterior samples of the kernel.

Figure: One-dimensional regression example demonstrating the GP-GRIEF type-I inference procedure in
Oppq. The posterior samples of the kernel demonstrate the flexibility of this parameterization.

UCI Regression Datasets

We present performance benchmarks on large UCI regression datasets. Observe that:
• Complexity independence on m enables use of 1033 inducing points on Cancer.
• GP-GRIEF-I using the developed Oppq procedure takes just 25 minutes to train

on the two-million point dataset Electric and greatly outperforms [4]. This size is
typically prohibitive for a fully Bayesian type-I approach.

Dataset n d m“Ďmd Time
(hrs)

GP-GRIEF-II Time
(hrs)

GP-GRIEF-I Yang et al. [4]

cancer 194 33 1033 0.007 27.843 ˘ 3.910 0.667 30.568 ˘ 3.340 35 ˘ 4
kin40k 40K 8 108 0.38 0.206 ˘ 0.004 0.649 0.206 ˘ 0.004 0.28 ˘ 0.01
electric 2M 11 1011 8.019 0.064 ˘ 0.002 0.418 0.058 ˘ 0.006 0.12 ˘ 0.12
Table: Mean and standard deviation of test error and average training time from 10-fold cross
validation on UCI regression datasets. GP-GRIEF-II uses maximium likelihood estimates of the
hyperparameters for type-II inference whereas GP-GRIEF-I uses a fully Bayesian type-I approach using
MCMC. We compare our results with Yang et al. [4] who uses the same train test splits and
approximates the same kernel using Fastfood finite basis function expansions. m is the number of
inducing points used and p is the number of eigenfunctions used.
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