
Exploiting Structure for Fast Kernel Learning
SIAM Data Mining (SDM18)

Trefor W. Evans & Prasanth B. Nair

University of Toronto

May 3, 2018

Evans & Nair SDM18 Exploiting Structure for Fast Kernel Learning 1



Introduction

Structured Data

We consider regression (or classification) problems where the
training data inputs lie on a grid.
We will call this structured data.

Eg. analysis of images, videos, spatial-temporal fields, sensor
networks, or multi-output processes.
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Introduction

Gappy Structured Data

We also consider the practical case where some responses are
missing from the structured training set.
We call these missing values gaps.

Eg. analysis of images, videos, spatial-temporal fields, sensor
networks, or multi-output processes.
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Introduction GP Background

Gaussian Processes (GPs)

Given a zero mean GP prior for the targets,
yX „ N p0N , KX,X ` σ

2INq, the log marginal likelihood is

logPpyX|θ, σ
2, X Xq “ ´

1
2 log |KX,X`σ

2IN |´ 1
2 yT

XpKX,X`σ
2INq´1yX´

N
2 logp2πq

If we estimate kernel hyperparmeters, we obtain the following
posterior distribution at a test point x˚ P Rd

y˚|X X, x˚ „ N
`

gT
XpKX,X ` σ

2INq´1yX, kpx˚, x˚q´gT
XpKX,X ` σ

2INq´1gX

˘

Requires OpN3q time and OpN2q storage!

GPs are typically intractable on large datasets even though
their flexibility is most valuable on large scale problems.
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Introduction Exploiting Structure without Gaps

Exploiting Structure without Gaps

When
1 Data is on a grid (with no gaps, M “ N)
2 Kernel obeys the product correlation rule

kpx, zq “
d
ź

i“1

ki pxi , ziq

then the covariance matrix inherits a Kronecker product form

K “
d
â

i“1
Ki

Ki P Rmˆm, K P RMˆM is the covariance between grid points,
and m “

d
?

M is the number of points along each dimension.
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Introduction Exploiting Structure without Gaps

Kronecker Matrix Algebra Merits

Storage of K

OpM2q Ñ OpdM2{dq

Matrix-Vector Multiplication with K

OpM2q Ñ OpdMpd`1q{dq

Inverse & Matrix Factorization of K

OpM3q Ñ OpdM3{dq
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Exploiting Structure with Gaps

Gappy Structured Data

Training points are still on a grid, however, some responses are
missing. Gaps may be caused by missing observations,
presence of obstructions or irregular domain boundaries, or
data corruption (Gunes et al., 2006; Wilson et al., 2014).
Unfortunately, efficient Kronecker matrix algebra can no longer
be used in the presence of these gaps.

X “ txiu
N
i“1, known response points

Z “ txiu
L
i“1, missing response points

KX,X no longer has a Kronecker product form!
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Exploiting Structure with Gaps Penalize Gaps

Penalize Gaps (Wilson et al., 2014)

Penalize Gaps (PG) Formulation (Wilson et al., 2014)
Use a conjugate gradient solver to find α

˜

d
â

i“1
Ki ` γR` σ2IM

¸

α “ y,

which satisfies
`

KX,X ` σ
2IN

˘

αX “ yX as the penalty γ Ñ8.

R P RMˆM is all zero except RZ,Z “ IL, and arbitrary numerical
values are inserted in the missing entries of yZ P RL.

However, it is not clear how large the user-defined penalty
parameter γ should be a priori and given a poor choice, the
method will suffer from numerical inaccuracies.
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Exploiting Structure with Gaps Ignore Gaps

Ignore Gaps (Our Approach)

Applies a selection matrix, W to K allowing algebraic
computations to be done on the structured K matrix.

Ignore Gaps (IG) Formulation

Use a conjugate gradient solver to find αX

˜

W
ˆ d
â

i“1
Ki

˙

WT
` σ2IN

¸

αX “ yX,

W P RNˆM is a sparse selection matrix such that WKWT
“KX,X.

This method admits fast matrix-vector products like the
previous method, and

requires no user-defined parameters, and
reduces the linear system size from M ˆM Ñ N ˆ N
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Exploiting Structure with Gaps IG Preconditioner

Ignore-Gaps Preconditioner

We develop the following preconditioner for the ignore-gaps
(IG) method

prKX,X`σ
2INq´1 “

1
σ2

”

IN´WQST
p
`

σ2Ip`TpSpQT WT WQST
p
˘´1TpSpQT WT

ı

,

where Sp P RpˆM is a sparse selection matrix such that
SpTST

p “ Tp P Rpˆp is a subset of T containing the p largest
eigenvalues of K on its diagonal.

This only requires the additional storage and inversion of a
matrix of size p ˆ p. After construction, multiplication with this
preconditioner costs only OpdM

d`1
d `p2q time.
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Exploiting Structure with Gaps Fill Gaps

Fill Gaps I (Our Approach)

Fill Gaps (FG) Formulation
1 Fill Gaps: Use a conjugate gradient solver to find yZ

V
ˆ d
â

i“1
Qi

˙

´

T` σ2IM
¯´1

ˆ d
â

i“1
QT

i

˙

VT yZ

“ ´V
ˆ d
â

i“1
Qi

˙

´

T` σ2IM
¯´1

ˆ d
â

i“1
QT

i

˙

WT yX,

2 Solve Structured Problem: compute

αX “ W
ˆ d
â

i“1
Qi

˙

´

T` σ2IM
¯´1

ˆ d
â

i“1
QT

i

˙

y,

which satisfies
`

KX,X ` σ
2IN

˘

αX “ yX.
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Exploiting Structure with Gaps Fill Gaps

Fill Gaps II (Our Approach)

V P RLˆL is a sparse selection matrix such that VKVT
“KZ,Z,

and Q,T P RMˆM are unitary and diagonal matrices,
respectively, formed from the eigen-decomposition of
K “ QTQT .

This method admits fast matrix-vector products like the PG
method, and

requires no user-defined parameters, and
reduces the linear system size from M ˆM Ñ Lˆ L

Evans & Nair SDM18 Exploiting Structure for Fast Kernel Learning 12



Exploiting Structure with Gaps Stress Testing

Stress Testing on Synthetic Video Data

(a) M “ 10,000 (b) M “ 17 million (c) M “ 1 billion

Figure: Reconstruction timings comparing the training techniques
across a range of gappiness on various problem sizes, M.

The developed algorithms are both faster and more robust than
the penalize-gaps (PG) technique.
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Exploiting Structure with Gaps Ontario Climate

Ontario Climate Modelling

Log posterior variance of daily temperature (˝C).
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Exploiting Structure with Gaps Ontario Climate

Ontario Climate Modelling

We construct a multi-output GP to model daily minimum and
daily maximum temperatures at 291 weather stations over 55
years.

The full grid size is M“11,928,672, however, over 6.5 million
points are missing and 30% of the remaining points are
randomly withheld for testing, giving N “ 3,742,547 training
points; an enormous problem for exact GP modelling.
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Exploiting Structure with Gaps Ontario Climate

Ontario Climate Modelling Results

Run Time RMSE p˝Cq

(hrs) Minimum Maximum

FG 11.5 2.02 1.45

IG 173.1 2.02 1.45

IG1000 37.3 2.02 1.45

IG3000 19.7 2.02 1.45

PG100 221.5 2.02 2.02

Table: Reconstruction time and accuracy of daily maximum and
minimum temperatures on the withheld test set using different training
techniques for the multi-output GP. PG# means the penalty γ“# was
used and IG# means a rank p“# preconditioner was used.
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Exploiting Structure with Gaps Ontario Climate

Moosonee Daily Temperature Reconstruction

Moosonee�

∆173m Elevation
∆171Km Distance

��

@
@
@@R

Log posterior variance of daily temperature (˝C).
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Exploiting Structure with Gaps Ontario Climate

Moosonee Daily Temperature Reconstruction

Figure: Reconstructed daily temperature observations for Moosonee
in 1992. The black curves show the actual daily maximum (top) and
minimum temperatures (bottom) which were both withheld from the
model to compute the blue posterior distribution where the mean and
three standard deviations (99.7% confidence) are illustrated.
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Exploiting Structure with Gaps Ontario Climate

Climate Forecasting

Figure: Forecast of Toronto maximum daily temperature. Actual
observations are in black and the posterior mean is in blue. Note that
the x-axis is on a log scale. For training, data at the Toronto weather
station was withheld for all years and data at all stations after July 1,
2004 was withheld.
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Conclusions

Summary

Developed methods that exploit data structure for fast kernel learning

Developed methods faster and more robust than the state-of-the-art

Novel preconditioner developed that accelerates performance greatly

Proposed method to infer posterior mean on gaps before training

Exact GP modelling demonstrated on problems with one-billion points
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Conclusions

Thank you

Code available at
https://github.com/treforevans/gp_grid
Tutorials coming soon!

Email: trefor.evans@mail.utoronto.ca
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Preconditioner Experiments

(a) CG Time (b) Setup & CG Time.

Figure: Results of a preconditioner efficacy study. We use a CG solver to find αX
considering varying values of p, and kernel lengthscales, θ`. The timings in figure 4a
only include the time required to solve the linear system using a CG solver while figure
4b also includes the time required to construct the preconditioner. All timings are
presented relative to the time to perform the reconstruction with no preconditioner. We
use M “ 10, 000.
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Estimated Temporal Kernel
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