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Overview

We propose two methods for exact Gaussian process (GP) inference and learning
on massive image, video, spatial-temporal, or multi-output datasets with missing
values (or “gaps”) in the observed responses. Both of these novel approaches make
extensive use of Kronecker matrix algebra to design massively scalable algorithms
which have low memory requirements. We demonstrate exact GP inference for
a spatial-temporal climate modelling problem with 3.7 million training points as
well as a video reconstruction problem with 1 billion points.

Gaussian Processes (GPs)

Specify a zero mean GP prior for the targets, yX „ N p0N , KX,X ` σ
2INq, the log

marginal likelihood is
log PpyX|θ, σ

2, X Xq “ ´
1
2 log |KX,X ` σ

2IN | ´ 1
2y

T
XpKX,X ` σ

2INq´1yX ´
N
2 logp2πq

If we estimate kernel hyperparameters, θ, σ2, we obtain the following posterior dis-
tribution at a test point x˚ P Rd

y˚|X X, x˚ „ N
`

gTXpKX,X ` σ
2INq´1yX, kpx˚,x˚q´gTXpKX,X ` σ

2INq´1gX
˘

This requires OpN 3
q time and OpN 2

q storage!
GPs are typically intractable on large datasets even though their
flexibility is most valuable on large scale problems.

Exploiting Structure without Gaps

Consider a regression (or classification) problem where the training data inputs forms
a grid. We will call this structured data. We can visualize the input distribution
of structured data as follows

1 If the data is on a grid (with no gaps, M “ N);

2 and the kernel obeys the product correlation rule, kpx, zq “
d
ś

i“1
ki pxi, ziq,

then the covariance matrix inherits a Kronecker product form

K “

d
â

i“1
Ki

where Ki P Rmˆm, K P RMˆM is covariance between grid points, and m “
d
?
M is

the number of points along each dimension. We can now perform extremely efficient
inference by exploiting Kronecker matrix algebra as follows.

Kronecker Matrix Algebra Merits

Storage of K: OpM 2
q Ñ OpdM 2{d

q

Matrix-Vector Multiplication with K: OpM 2
q Ñ OpdM pd`1q{d

q

Inverse & Matrix Factorization of K: OpM 3
q Ñ OpdM 3{d

q

Gaps Destroy Kronecker Product Structure!

In practice, some training data may be missing from the full input grid. These
“gaps” may be caused by missing observations or data corruption. Unfortunately,
efficient Kronecker matrix algebra can no longer be used in the presence of gaps.

Notation:
X “ txiuNi“1, known response points
Z “ txiuLi“1, missing response points

KX,X no longer has a Kronecker product form!

Penalize Gaps (PG) Approach (Wilson et al., 2014)

Wilson et al. (2014) approached this problem by using a conjugate gradient solver to
find α as follows,

ˆ d
â

i“1
Ki ` γR ` σ2IM

˙

α “ y,

which satisfies
´

KX,X ` σ
2IN

¯

αX “ yX as the penalty γ Ñ 8. R P RMˆM is all zero
except RZ,Z “ IL, and arbitrary numerical values are inserted in yZ P RL.
However, it is not clear how large the user-defined penalty parameter γ should be a
priori and given a poor choice, the method will suffer from numerical inaccuracies.

Ignore Gaps (IG) Approach

Applies a selection matrix, W to K allowing algebraic computations to be done
on the structured K matrix. Use a conjugate gradient solver to find αX

¨

˝W
ˆ d
â

i“1
Ki

˙

WT
` σ2IN

˛

‚αX “ yX,

W P RNˆM is a sparse selection matrix such that WKWT
“KX,X.

• Requires no user-defined parameters (like the PG method), and
• Reduces size of the training problem from M ˆM Ñ N ˆN

Fill Gaps (FG) Approach

1 Fill Gaps: Use a conjugate gradient solver to find yZ

V
ˆ d
â

i“1
Qi

˙

´

T ` σ2IM
¯´1

ˆ d
â

i“1
QT
i

˙

VTyZ

“ ´V
ˆ d
â

i“1
Qi

˙

´

T ` σ2IM
¯´1

ˆ d
â

i“1
QT
i

˙

WTyX,

2 Solve Structured Problem: compute

αX “ W
ˆ d
â

i“1
Qi

˙

´

T ` σ2IM
¯´1

ˆ d
â

i“1
QT
i

˙

y,

V P RLˆL is a sparse selection matrix such that VKVT
“KZ,Z, and Q,T P RMˆM

are the eigenvector and eigenvalue matrices of K, respectively.

• Requires no user-defined parameters (like the PG method), and
• Reduces size of the training problem from M ˆM Ñ L ˆ L

Billion Point Stress Tests

(a) M “ 10, 000 (b) M “ 17 million (c) M “ 1 billion

Figure: Reconstruction timings comparing the training techniques across a range of gappiness on
various problem sizes, M , on synthetic video data. Both our approaches are evidently faster and more
robust than the existing PG technique which was unsuccessful in the larger studies.

Ontario Climate Modelling

We construct a multi-output GP to model daily minimum and maximum temperatures at 291 Ontario
weather stations over 55 years with N “3,742,547 train points. Both our approaches decreased
run-time verses the existing PG technique by more than one order of magnitude.
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Figure: Log posterior variance of daily temperature (˝C).

Figure: Reconstructed daily temperature observations for Moosonee in 1992. Actual (black), and
posterior mean and 99.7% confidence intervals (blue) are shown.

Figure: Forecast of Toronto maximum daily temperature. Actual observations (black) and posterior
mean (blue) shown. Toronto training data was removed along with all station data after July 1, 2004.
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