Overview

In the proposed "DIRECT" approach to variational inference, we discretely relax
continuous variables such that posterior samples consist of sparse and low-precision
quantized integers. This enables memory and energy eflicient inference which is
critical for on-board machine learning on mobile devices as well as large-scale de-
ployed models. Variational inference for discrete latent variable models typically
require the use of high variance stochastic gradient estimators, making training
impractical for large-scale models. Instead, the DIRECT approach exploits alge-
braic structure of the ELBO, enabling

« exact computation of ELBO gradients, eliminating variance;
= its training complexity is independent of the number of training points; and
= posterior samples consist of sparse and low-precision quantized integers

We demonstrate accurate inference on huge datasets using 4-bit quantized integers
and an ELBO summing over 10%*°? log-likelihood evaluations.

The Need for Efficient Inference

Memory and energy efliciency are critical
for mobile devices performing on-board
inference, as well as large-scale deployed
models.

We introduce a new technique to
efliciently perform approximate Bayesian
inference with discrete variables. These
discrete models can dramatically reduce
computational requirements at inference
tiume.

Discretely Relaxing Continuous Variables (DIRECT)

Continuous priors are typically used for
approximate Bayesian inference due to
computationally tractable training strategies (e.g. the
reparameterization trick).
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Conversely, models with discrete priors are
challenging to train, however, they offer many
advantages at inference time since posterior samples
will be sparse and low-precision quantized integers.

The DIRECT strategy we introduce allows these
discrete models to be trained extremely efficiently,
allowing us to discretely relax continuous priors to
perform tractable variational inference.
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The ELBO

The following is the evidence lower bound (or ELBO) for discrete or continuous priors

Prior ELBO

‘ ELBO(O) = qu(w)(log Pr(y|w) + log Pr(w) — log qa(w))dw,

“ h ELBO(O) = qT(logE +logp — 10gq),
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where log€ = {log Pr(yjw;)}i2;, logp = {logPr(wy)}Z,, a = {ge(W:)}Z;, and
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where 17 € R™ denotes a vector of ones, w; € R™ contains the m discrete values
that the ith latent variable w; can take, m = m’ and ® denotes the Kronecker
product. By observing that the vectors q € R™ and p € R can be written as
Kronecker product vectors when the prior and variational distributions factorize, we
can efficiently and exactly compute two terms in the ELBO as follows,

b b
ELBO) = q”'log €+ Y q'logp, - Y ql'log q;,
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where we use the fact that p;, q, e R™ define valid probability distributions for the
1th latent variable such that p,, q; both sum to unity. We also extend these results
for unfactorized prior and variational distributions. We next consider the likelihood
term for a popular generalized linear model with a Gaussian likelihood.
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Theorem 1: Exact ELBO for a GLM

The ELBO can be exactly computed for a discretely relaxed generalized linear
model (GLM) for regression as follows
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ELBO(O) = —g 5( Lo™?) (yTy—2sT(<I>Ty)+ST<I>T<I>S—diag(<I>T<I>)TSQ+
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ajh;) + Y (q/ logp; - q/ logq;) + qf logp, - q log q,,
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where q,,p, € are factorized variational and prior distributions over the
Gaussian noise variance o° for which we consider the discrete positive values
o’ ¢ R™ respectively. Also, ® = {@j(Xi)}ij € R contains the evaluations
of the basis functions on the training data, and we use the shorthand notation

H = (w2 ¢;}' e R™ and s = {q] W;}’_, e R".

Viewing the log-prior, log-likelihood, and variational distributions over the
hypothesis space as tensors, this technique basically exploits the low-rank structure
of these tensors to re-write the ELBO in a compact form.

Evidently, the cost of evaluating the ELBO in this compact form is independent of
the number of training points!

A similar viewpoint can be used to show that statistical moments of the predictive
posterior can be exactly computed for this model as well.

This "DIRECT" approach is not practical for all likelihoods, however, we identify a
couple of models (including the GLM) that are practical.

Discretely Relaxing Continuous Variables for tractable Variational Inference

Theorem 3: Mixture Entropy Lower Bound

The following inequality holds when we consider a finite mixture of factorized

categorical distributions for the variational distribution (q = >/_; «; @?:1 qy)),
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where a = ®§:1ai, a; € (0, 1)™ is the center of the Taylor series approximation of

logq, and a € (0,1)" is a vector of mixture probabilities for the r components.

This allows for the use of unfactorized variational distributions through the use of a
novel Taylor series approximation. This technique is very fast, however, since it does
not allow us to compute the ELBO exactly, it introduces bias. Alternatively, since
the entropy doesn’t depend on the data, it is actually cheap to compute so we can
instead use a low-variance stochastic estimator for the entropy as follows
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where s; € R” is the ith of ¢ samples, and we can achieve low variance by using
many samples. We can see the effects of extending mean-field DIRECT inference to
using a flexible mixture model with biased gradients, and then unbaised gradients.

DIRECT Mean-Field Model DIRECT Mixture Model with Biased ELBO Gradients DIRECT Mixture Model with Unbiased ELBO Gradients
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Comparison with REINFORCE

Training with DIRECT greatly outperforms REINFORCE in train time and iterations
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UCI Regression Datasets

On many datasets, DIRECT can outperform REPARAM in training time and accu-
racy, in addition to having sparse and quantized posterior samples.

Continuous Prior Discrete 4-bit Prior

REPARAM Mean-Field | DIRECT Mean-Field | DIRECT 5-Mixture SGD
Dataset n RMSE Sparsity | RMSE Sparsity | RMSE Sparsity
auto 159 10425+0.2 0% 0.129 + 0.063 51% 0.122 + 0.056 51%

gas 2.5K 10.27 £0.052 0% 0.211 +£ 0.058 84% 0.184 + 0.063 76%
protein 45K | 0.642 4+ 0.006 0% 0.619 4+ 0.007 76% 0.618 - 0.007 60%
song 515K | 0.537 + 0.002 0% 0.501 + 0.002 32% 0.498 + 0.002 28%
electric 2M 19.26 +4.47 0% 0.575 4+ 0.032 99.6% |0.557 +0.055 99.6%
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