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Overview

In the proposed "DIRECT" approach to variational inference, we discretely relax
continuous variables such that posterior samples consist of sparse and low-precision
quantized integers. This enables memory and energy efficient inference which is
critical for on-board machine learning on mobile devices as well as large-scale de-
ployed models. Variational inference for discrete latent variable models typically
require the use of high variance stochastic gradient estimators, making training
impractical for large-scale models. Instead, the DIRECT approach exploits alge-
braic structure of the ELBO, enabling
• exact computation of ELBO gradients, eliminating variance;
• its training complexity is independent of the number of training points; and
• posterior samples consist of sparse and low-precision quantized integers
We demonstrate accurate inference on huge datasets using 4-bit quantized integers
and an ELBO summing over 102352 log-likelihood evaluations.

The Need for Efficient Inference

Memory and energy efficiency are critical
for mobile devices performing on-board
inference, as well as large-scale deployed
models.

We introduce a new technique to
efficiently perform approximate Bayesian
inference with discrete variables. These
discrete models can dramatically reduce
computational requirements at inference
time.

Discretely Relaxing Continuous Variables (DIRECT)

Continuous priors are typically used for
approximate Bayesian inference due to
computationally tractable training strategies (e.g. the
reparameterization trick).
Conversely, models with discrete priors are
challenging to train, however, they offer many
advantages at inference time since posterior samples
will be sparse and low-precision quantized integers.
The DIRECT strategy we introduce allows these
discrete models to be trained extremely efficiently,
allowing us to discretely relax continuous priors to
perform tractable variational inference.

The ELBO

The following is the evidence lower bound (or ELBO) for discrete or continuous priors
Prior ELBO

ELBOpθq “
ż

qθpwq
´

log Prpy|wq ` log Prpwq ´ log qθpwq
¯

dw,

ELBOpθq “ qT
´

log ` ` log p ´ log q
¯

,

where log ` “ tlog Prpy|wiqu
m
i“1, log p “ tlog Prpwiqu

m
i“1, q “ tqθpwiqu

m
i“1, and

twiu
m
i“1 “ W P Rbˆm is the entire support set of the discrete prior, written as follows,
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where 1
sm P R sm denotes a vector of ones, Ďwi P R sm contains the Ďm discrete values

that the ith latent variable wi can take, m “ Ďmb, and b denotes the Kronecker
product. By observing that the vectors q P Rm and p P Rm can be written as
Kronecker product vectors when the prior and variational distributions factorize, we
can efficiently and exactly compute two terms in the ELBO as follows,

ELBOpθq “ qT log ` `
b
ÿ

i“1
qTi log pi ´

b
ÿ

i“1
qTi log qi,

where we use the fact that pi,qi P R sm define valid probability distributions for the
ith latent variable such that pi,qi both sum to unity. We also extend these results
for unfactorized prior and variational distributions. We next consider the likelihood
term for a popular generalized linear model with a Gaussian likelihood.

Theorem 1: Exact ELBO for a GLM

The ELBO can be exactly computed for a discretely relaxed generalized linear
model (GLM) for regression as follows

ELBOpθq “ ´n
2
qTσ logσ2

´
1
2
`

qTσσ´2˘
´

yTy´2sT
`

ΦTy
˘

`sTΦTΦs´diagpΦTΦqTs2
`

b
ÿ

j“1
qTj hj

¯

`

b
ÿ

i“1

`

qTi log pi ´ qTi log qi
˘

` qTσ log pσ ´ qTσ log qσ,

where qσ,pσ P R sm are factorized variational and prior distributions over the
Gaussian noise variance σ2 for which we consider the discrete positive values
σ2

P R sm, respectively. Also, Φ “ tφjpxiqui,j P Rnˆb contains the evaluations
of the basis functions on the training data, and we use the shorthand notation
H “ tĎw2

j

řn
i“1 φ

2
iju

b
j“1 P R smˆb, and s “ tqTj Ďwju

b
j“1 P Rb.

Viewing the log-prior, log-likelihood, and variational distributions over the
hypothesis space as tensors, this technique basically exploits the low-rank structure
of these tensors to re-write the ELBO in a compact form.
Evidently, the cost of evaluating the ELBO in this compact form is independent of
the number of training points!
A similar viewpoint can be used to show that statistical moments of the predictive
posterior can be exactly computed for this model as well.
This "DIRECT" approach is not practical for all likelihoods, however, we identify a
couple of models (including the GLM) that are practical.

Theorem 3: Mixture Entropy Lower Bound

The following inequality holds when we consider a finite mixture of factorized
categorical distributions for the variational distribution (q “

řr
i“1αi

Âb
j“1 qpiqj ),

´qT log q ě max
taiPp0,1q smubi“1

1 ´
r
ÿ

j“1
αj

ˆ b
ÿ

i“1
qpjqTi log ai

` αj
b
ź

i“1
qpjqTi

qpjqi
ai

` 2
r
ÿ

k“j`1
αk

b
ź

i“1
qpjqTi

qpkqi
ai

˙

,

where a “ b
b
i“1ai, ai P p0, 1q sm is the center of the Taylor series approximation of

log q, and α P p0, 1qr is a vector of mixture probabilities for the r components.

This allows for the use of unfactorized variational distributions through the use of a
novel Taylor series approximation. This technique is very fast, however, since it does
not allow us to compute the ELBO exactly, it introduces bias. Alternatively, since
the entropy doesn’t depend on the data, it is actually cheap to compute so we can
instead use a low-variance stochastic estimator for the entropy as follows

B

Bθ
qT log q «

B

Bθ

1
2t

t
ÿ

i“1

`

log qpsiq ` 1
˘2,

where si P Rb is the ith of t samples, and we can achieve low variance by using
many samples. We can see the effects of extending mean-field DIRECT inference to
using a flexible mixture model with biased gradients, and then unbaised gradients.

Comparison with REINFORCE

Training with DIRECT greatly outperforms REINFORCE in train time and iterations
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UCI Regression Datasets

On many datasets, DIRECT can outperform REPARAM in training time and accu-
racy, in addition to having sparse and quantized posterior samples.

Continuous Prior Discrete 4-bit Prior
REPARAM Mean-Field DIRECT Mean-Field DIRECT 5-Mixture SGD

Dataset n RMSE Sparsity RMSE Sparsity RMSE Sparsity
auto 159 0.425 ˘ 0.2 0% 0.129 ˘ 0.063 51% 0.122 ˘ 0.056 51%
gas 2.5K 0.27 ˘ 0.052 0% 0.211 ˘ 0.058 84% 0.184 ˘ 0.063 76%
protein 45K 0.642 ˘ 0.006 0% 0.619 ˘ 0.007 76% 0.618 ˘ 0.007 60%
song 515K 0.537 ˘ 0.002 0% 0.501 ˘ 0.002 32% 0.498 ˘ 0.002 28%
electric 2M 9.26 ˘ 4.47 0% 0.575 ˘ 0.032 99.6% 0.557 ˘ 0.055 99.6%
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