ADVANCES IN SCALABLE BAYESIAN INFERENCE:
GAUSSIAN PROCESSES & DISCRETE VARIABLE MODELS

Trefor W. Evans

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of the Institute for Aerospace Studies
University of Toronto

© Copyright 2022 by Trefor W. Evans



Advances in Scalable Bayesian Inference:
Gaussian Processes & Discrete Variable Models

Trefor W. Evans
Doctor of Philosophy

Graduate Department of the Institute for Aerospace Studies

University of Toronto
2022

Abstract

Gaussian processes are exactly the models we would like to use for modern machine learning
tasks; they are non-parametric models whose capacity naturally adapts to the quantity of
training data, are highly interpretable, offer powerful opportunities to incorporate prior
knowledge, and they deal with uncertainty due to lack of data in a rigorous manner through
Bayesian inference. Unfortunately, the generic algorithm for Gaussian process training and
inference scales with O(n?) time and O(n?) storage on a problem with n training observations.
Given present-day computational resources, this scaling makes Gaussian processes struggle
to scale beyond modestly sized datasets. This thesis explores approaches to scale Gaussian
process training and inference to large datasets without sacrificing the benefits of these
models. Specifically, we present theoretical analyses alongside algorithmic advances in
Gaussian process modelling and inference for regression and classification problems.

First, we consider Gaussian process inference on a problem structure present in many spa-
tiotemporal problems and develop several algorithms that dramatically reduce the complexity
of exact Gaussian process inference using Kronecker matrix algebra.

We then discuss a novel Gaussian process approximation by showing how an accurate
Nystrém approximation of kernel eigenfunctions can use as many as 10%® inducing points with
little computational expense. We subsequently consider a highly general class of Gaussian
process covariance kernels and show that the Gaussian process marginal likelihood can be
computed with a complexity that is independent of the number of training observations and
as low as linear in the number of kernel basis functions.

We then consider a variational inference approximation to the Gaussian process posterior

that exploits a stochastic training strategy whose per iteration complexity is independent of
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both the number of training examples and the number of kernel basis functions. We show
that this unique approach enables the use of high-capacity Gaussian process models on large
datasets for regression and classification.

Finally, we consider a discrete relaxation of continuous priors that enables fast inferencing
on devices with limited computing resources. We develop a novel variational inference
procedure that exploits Kronecker matrix algebra to compute the variational bound exactly

and with a complexity that is independent of the dataset size.
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Chapter 1

Introduction

Machine learning aims to construct a predictive model whose performance on a particular task
is improved by observing data. For example, we may want a model to use examples of hand-
written digits to learn how to recognize them. In a Bayesian approach to machine learning,
we work with probabilistic models and uncertainty. In Bayesian inference, we take a group of
hypotheses, and weight those hypotheses based on how well predictions match the observed
data, and how well they match prior knowledge about the problem. This approach is appealing
for two reasons. First, Bayesian inference provides a natural mechanism to incorporate prior
knowledge about a problem, which can enable powerful predictive capabilities even when little
data has been observed. Second, keeping all hypotheses that match the observed data helps
to guard against overfitting, and admits confidence bounds for data analysis and decision
making, a crucially important element in many applications where it is necessary to be able to
tell whether a model is certain about its prediction. For instance, if a safety critical decision is
being made based upon a machine learning model (such as an autonomous car deciding whether
to brake or not), it is important to be aware of how certain the model is about this decision.

Despite the attractive aspects of a Bayesian approach to machine learning, this principled
statistical technique does not easily scale to complex models and to large quantities of
observed data. This is problematic due to the tremendous growth of data generation in
modern times, leading to a push in the engineering and machine learning community for the
ability to process and extract actionable information from ever larger datasets in applications
from business (Chen et al., 2012) and government policy (Kim et al., 2014) to data-intensive
science (Bell et al., 2009). These problems need to be addressed with highly scalable algorithms
that can enable fast, or even real-time, processing. Unfortunately, Bayesian approaches to
machine learning struggle to scale while addressing these big data problems. Instead, simpler
heuristic techniques are often adopted that cannot provide accurate prediction statistics.
This can lead to poor generalization robustness, which is dangerous in a society that is placing
a growing trust in artificially intelligent systems (Bradshaw et al., 2017; Ghahramani, 2015).
This thesis will focus on the development of scalable Bayesian techniques to fill this gap.

Gaussian processes (GPs) are one such Bayesian approach to machine learning. Gaussian
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processes, which define probability distributions over functions, can be used to learn more
likely and less likely ways to generalize from observed data. Perhaps the most impressive
feature of GPs are that computation of the conditional distribution of a Gaussian process
on observed data can be done analytically, and also results in a Gaussian process. Gaussian
processes also reason directly over functions. This is in contrast to many other machine learn-
ing models that reason over abstract objects (for instance in deep neural networks, reasoning
and inference is performed over a high dimensional vector of the weights/parameters of the
network). Reasoning over functions leads to interpretable models and priors that can easily
encode high-level knowledge about the problem at hand (for instance function smoothness,
stationarity, additivity, symmetry, or periodicity could all be specified a priori). Lastly, being
non-parametric models with potentially infinite capacity, Gaussian processes are also exactly
the type of models we desire for large quantities of observed data, and the modelling of complex
functions. Therefore, Gaussian processes are precisely the model we would like to consider for
processing and extracting actionable information from massive datasets of the modern era.
The focus of this thesis is on the development of scalable Gaussian process models. We
consider two perspectives of scalability: i) the ability to perform inference on Gaussian process
models using large quantities of observed data, and ii) the ability to perform inference with
Gaussian processes that have the capacity to model complicated functions. Scalable solutions
to Gaussian processes often consider one of these goals at the expense of the other. For instance,
general (exact) Gaussian processes may have an infinite model capacity but cannot handle large
datasets, whereas Gaussian process approximations limit model capacity, allowing the methods
toscale to large datasets at the expense of the ability to model complex functions. Scaling Gaus-
sian processes to both of these definitions of scalability is an open and active area of research.
The challenges of scalability are encountered at several stages of the Gaussian process value
chain. For instance, during the so-called training stage, where model selection is often carried
out and precomputations are performed, necessary operations for exact Gaussian processes
generally scale with O(n?) memory and O(n?) time, given n data observations. During test
time when a GP would be deployed, computation of an exact GP predictive posterior generally
requires O(n?) memory and time (see section 2.2). These complexities can be prohibitive
for both the training and deployment stages, particularly in applications where hardware
limitations are restrictive and when predictions need to be performed in real-time. We will
therefore discuss implications on GP scaling through both training and deployment stages.
We now provide a brief overview of the thesis structure. Note that specific contributions
and associated publications are detailed at the beginning of each respective chapter. In
chapter 2, we begin by providing a background on common techniques and tools that are
required for further chapters. Specifically, we provide an approachable and comprehensive
background on Bayesian inference and Gaussian processes.
In chapter 3, two methods are introduced for exact GP inference and learning on massive

image, video, spatiotemporal, or multi-output datasets with missing values (or “gaps”) in the
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observed responses. Both of these novel approaches make extensive use of Kronecker matrix
algebra to design massively scalable algorithms that have low memory requirements. We
demonstrate exact GP inference for a particle image velocimetry (PIV) problem with 20 million
training observations, a spatiotemporal climate modelling problem with 3.7 million training
observations, as well as a video reconstruction problem with one billion training observations.

In chapter 4, we introduce a kernel approximation strategy that enables Gaussian process
training and inference in O(np?) time. The developed “GRIEF” kernel consists of p eigen-
functions approximated on a dense Cartesian tensor product grid of inducing points. We
show that by exploiting algebraic properties of Kronecker and Khatri-Rao tensor products,
computational complexity of the training procedure can be independent of the number of
inducing points, allowing us to use arbitrarily many to achieve a globally accurate kernel
approximation. We benchmark our algorithm on real-world problems with as many as
two million training observations and up to 10%? inducing points.

In chapter 5, we describe a powerful GP model that permits exact inference using a Markov
chain Monte Carlo (MCMC) sampling scheme where the cost of each MCMC sample is
independent of the size of the training dataset. We also provide an asymptotic result showing
that any stationary kernel can be recovered when using the developed parameterization. We
benchmark this algorithm on real-world problems with up to two million training observations.

In chapter 6, we introduce a new approach to GP scaling that we call “quadruply stochastic
Gaussian processes” (QSGP). The central contribution of the QSGP is a stochastic training
procedure that uses a Monte Carlo estimator to make four unbiased estimates of the training
loss and is presented in theorems 6.1 and 6.2. These estimators allow stochastic gradient
descent to be performed such that each optimization iteration is independent of both the
quantity of training data and the complexity of the model. Ultimately, this allows the QSGP
model to perform inference on huge datasets using large capacity GP models. We demonstrate
accurate inference on large classification and regression datasets using GPs and relevance
vector machines with up to m =107 basis functions.

In chapter 7, we introduce a variational inference technique for discrete latent variable mod-
els such that the posterior samples consist of sparse and low-precision quantized integers. This
method (referred to as “DIRECT”) admits deterministic gradients and the training complexity
is, again, independent of the size of the training dataset. The DIRECT approach is not practical
for all likelihoods; however, we identify a popular model structure that is practical, and demon-
strate accurate inference using latent variables discretized as low-precision 4-bit quantized in-
tegers. While the ELBO computations considered in the numerical studies require over 10%3°2
log-likelihood evaluations, we train on datasets with over two million points in just seconds.

The thesis concludes in chapter 8 with a summary of research contributions and a discussion

of future work.



Chapter 2
Background

This chapter provides a background on common techniques and tools that are used in subse-
quent chapters of this thesis. Specifically, it provides an introduction to Bayesian inference
for machine learning on the way to a comprehensive overview of Gaussian processes. There
is a notable lack of clean introductory material for Gaussian processes in particular and this
chapter aims to help fill that gap with a liberal use of visuals. As an overview, section 2.1 begins
by introducing a Bayesian approach to machine learning followed by section 2.2, which then
focuses on the particular modelling choice of Gaussian processes (GPs). Section 2.3 continues
with a discussion of techniques to perform Bayesian model selection, and section 2.4 concludes
with a brief overview of some approximate Gaussian process techniques in the literature that

either allow GPs to scale, or to handle more general types of machine learning problems.

2.1 Bayesian Learning

Machine learning ultimately aims to create algorithms that improve their performance by
leveraging observed data. For example, after observing the results of two experiments, we may
want a computer to predict the result of a third experiment. Machine learning algorithms rely
on statistical models that will hopefully reflect reality, and these models contain parameters
whose value is unknown or uncertain a priori. In the process of machine learning, we would
like to determine the parameter values that give predictions as close to reality as possible.
Given any dataset of finite size, we cannot expect to get completely certain answers about
the parameter values. For example, consider fig. 2.1a where two noisy observations have been
collected for a one-dimensional regression problem that were generated from the dashed black
line with i.7.d. Gaussian noise applied. The goal here is to predict a value of y* at a given value
of x*. We have chosen a linear statistical model for this problem and it is visually evident
that multiple different straight lines could fit the data, each of which would give different
predictions beyond the dataset. Bayesian learning differs from other approaches to machine
learning in how to infer the model’s parameters given the dataset. For instance, one might

suggest selecting the parameters that best fits the data; however, this approach may perform
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very poorly as we move away from the training data, as seen in fig. 2.1b. This is known as over-
fitting, a degeneracy that must be accounted for in many approaches to machine learning. In
contrast, a Bayesian approach to machine learning finds a distribution over parameter settings
that agrees with both the observed data and with prior knowledge. The Bayesian predictions
can be seen in fig. 2.1c, which evidently does not provide a point estimate for y* given a value
of x* but rather a distribution over plausible values of y*. In this example, these probabilistic
predictions compare favourably to the point predictions in fig. 2.1b since it reflects uncertainty

due to lack of data. We will return to this example frequently throughout this chapter.

1.0 1.0 1.0

0.5 A 0.5 A 0.5 A

> 0.0 __,—{"'— > 0.0
-059 17 -0.5

-1.0 T T T -1.0 T T T -1.0

-1.0 -0.5 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0 -1.0
X X X
(a) Noisy one-dimensional dataset. (b) Maximum likelihood predictor. (c) Bayesian posterior samples.

Figure 2.1: Comparison of maximum likelihood and Bayesian approaches to inference. The training data is shown in black which
was generated by the dashed black line and corrupted by independent Gaussian noise. The maximum likelihood predictor is given
in red whereas samples from the Bayesian posterior are given by the green lines.

In Bayesian inference, probability distributions are used to reflect uncertainty. From the
example in fig. 2.1¢, samples from the probability distribution over y* were used to visualize
the fact that y* is a random variable at any z*. Probability theory provides a rigorous
foundation that allows us to reason under uncertainty (Jaynes, 2003). We will now proceed

to describe how we can use this theory in machine learning.

Parameter Inference

We begin Bayesian inference for machine learning by choosing a statistical model. Returning

to the example in fig. 2.1, the chosen statistical model takes the form

y:[ flz;w)+€ ]’ (2.1)

fxo;w)+eo

where
flz;w)=wix+w, (2.2)

is a linear model, w = [wl,wg]T are model parameters, (z1,y1) and (z2,y9) are the two data
points in fig. 2.1a, and €;, €5 are random variables describing additive noise. In a Bayesian
treatment, we will consider both y and w as random variables, since before observing any data
we are uncertain about these variables. We represent the uncertainty about these variables

in the joint distribution under the model, Pr (y, W). Using the chain rule (also known as the
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product rule) of probability theory, we can write the joint distribution of y and w as

Pr(y, W) = Pr(y‘w) Pr(w). (2.3)
—_—— —_———— ——
joint under the model likelihood prior

While it is not necessary to decompose the joint under the model in this manner to perform
Bayesian inference, it is often convenient for the purposes of interpretability. In our example,
eq. (2.1) contains all the information needed to define the likelihood (provided we know the
statistical properties of €; and ;). Additionally, the prior Pr (W) can be selected based upon
our belief about the value of the model parameters a priori (before observing any data). Speci-
fying a good prior is important for Bayesian inference to be effective. It requires a practitioner
to express their belief explicitly as a probability distribution, which can take practice.
Equation (2.3) contains all the information that is required to start a Bayesian modelling
procedure. While decomposing the joint under the model into a prior and likelihood is attrac-
tive for the purposes of interpretability, it is often useful to consider the joint as its own entity
that summarizes all information about the statistical model and the practitioner’s prior beliefs.
After specifying the joint under the model, we are now ready for data. The term inference (or
more specifically statistical inference) refers to making conclusions about uncertain variables
given the observational data. This is precisely what we would like to do. To begin, consider re-

writing the joint from eq. (2.3) using the chain rule of probability theory in a symmetric manner

Pr(y,w) = Pr(w‘y) Pr(y) . (2.4)
—_—— — ——
joint under the model posterior  model evidence

Our goal is to compute the posterior which provides an update to our belief about w after

observing the dataset. We can compute the posterior by rearranging eq. (2.4) to give

joint under the model likelihood prior
— ——
Pr(y, w Pr(y|w) Pr(w
Pr(wly) = — W) Priyiw) Pr(w), (2.5)
—_— Pr (y) Pr (y)
posterior N~—— ~——
model evidence model evidence

This simple relation is referred to as Bayes’ rule and describes how we can update our beliefs
after observing data. The only element in the preceding equation that has not yet been
discussed is the model evidence (also known as the marginal likelihood) which is the joint

under the model with w marginalized. The model evidence can be defined as follows:

Pr(y) = J Pr(y,w) dw. (2.6)
S~—— —
model evidence joint under the model

Unfortunately, this expression is usually challenging to compute since it is an integral which is

often high-dimensional and cannot be computed in closed form in many instances. Evaluating
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the model evidence is typically the most computationally challenging aspect of Bayesian
inference, and this integral alone typically makes Bayesian inference more computationally
taxing than a point-estimate approach such as the maximum likelihood procedure shown in
fig. 2.1b for our simple example. This is perhaps not too surprising considering that Bayesian
inference requires inferring distributions rather than point estimates. A wealth of approaches
have been developed to ease computational burden through approrimate Bayesian inference
techniques. Several approximate techniques will be introduced throughout this thesis where
required; however, we shall see in section 2.3.1 that the model evidence can be computed in

closed form for the majority of the models we will consider.

Predictive Inference

We previously showed how to update beliefs about the model parameters given data obser-
vations through the posterior, Pr (w‘y). While in some scenarios, a practitioner might care
about the model parameters directly, in most machine learning scenarios, we only care about
the ability to predict f(x*) at a value of x* that was not in the training dataset. In other

words, we would like to perform predictive inference. This can be performed as follows:

Pr(f(x*)ly) = J Pr(f(x*)|w) Pr(wly) dw. (2.7)
| S | —_——
predictive posterior predictive likelihood posterior

which is evidently a weighted average of the predictions at all values of parameters w, weighted
by the posterior. In this way, uncertainty of the parameters are taken into account to express
uncertainty over predictions. Quantifying predictive uncertainty is crucial for safe or optimal
decision making. In these cases, the predictive posterior would be used for downstream
decision making procedures to directly assess risk and potential reward.

In fig. 2.1c, the predictive posterior was sampled 25 times for visualization. In that example,
the predictive likelihood was the degenerate distribution Pr(f(z*)|w) =d(f(z*;w)—y*) since
there is a deterministic relationship between f and w given by eq. (2.2), where §(-) denotes
the Dirac delta.

Example

Returning to our original example in fig. 2.1, we now analyze the modelling choices made,
including the likelihood and prior, to better understand the inference procedures conducted.
Beginning with the likelihood, the two observations in the dataset were corrupted with
i.i.d. Gaussian noise, and therefore the random variables €; and e; from eq. (2.1) are i.i.d.
Gaussian with variance 2. The assumption of 7.i.d. Gaussian noise is a common assumption

and one that is frequently employed throughout this thesis, and this assumption alone allows
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T . T
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

~10  -05 0.0 05 10 -1.0 -05 0.0 05 10 -1.0 -05 0.0 05 10
wy w w1
(a) Maximum likelihood predictor. (b) Bayesian prior. (c) Bayesian posterior.

Figure 2.2: Comparison of maximum likelihood and Bayesian approaches to inference. A linear model f(z) = wiz + wa is
employed and the top plots demonstrate inference in function space (z, y) whereas the bottom plots show inference in weight
space (w1, wz). The green lines and dots denote samples drawn from the function and weight space, respectively. The contour
plots in the bottom row from left-to-right contain the likelihood, prior and posterior. Additionally, the black x in the bottom row
indicates the exact parameters that we would like to recover, i.e., the parameters used to draw the black dashed line the top row.

us to define our likelihood as follows:

: 1
Pr(y|lw) =N h J(wiw) , o 0 : (2.8)
—_— Yo f(zo;w) 01
likelihood

The likelihood of the dataset is plotted on the bottom of fig. 2.2a as a contour plot for various
values of parameters (wy, wy). It is evident that the red mazimum likelihood line in the top
of fig. 2.2a corresponds to the red dot in the bottom plot that maximizes the likelihood. If
a point estimate is to be made, this choice does seem sensible; however, this simple example
alone showcases the danger of making point estimates and its susceptibility to overfitting.

Next, we can define a prior, Pr(w). In this case we choose an i.7.d. Gaussian prior which
is plotted on the bottom of fig. 2.2b as a contour plot. We can visualize the effect of this prior
by drawing samples from it (green dots) and plotting each sample in the top plot (green lines).
Evidently, this is not a particularly informative prior and indicates that we are not very aware
of what the values of (wy, wy) should be.

Now that we have specified the likelihood and prior, the posterior can be computed. There
are many advanced techniques that can be applied to compute or approximate a posterior
that will be detailed later in the thesis'. For this simple example, we can consider a naive
approach that can help to understand the posterior more clearly. From Bayes’ rule in eq. (2.5),

the posterior is evidently proportional to the product of the likelihood and prior. Visually, we

Hn fact, this posterior can be computed in closed form as we will show in section 2.2.1.
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where ® denotes an “elementwise” product that multiplies the likelihood and prior at each
value of (w, ws). The relation on the left-hand side of eq. (2.9) is proportional to the posterior
up to a multiplicative factor. The multiplicative factor is the inverse model evidence as given
by Bayes’ rule in eq. (2.5), and this factor ensures that the posterior integrates to unity; a
requirement for a valid probability distribution. Once again, we can visualize the effect of the
posterior in the bottom plot of fig. 2.2¢ by drawing samples from it (green dots) and plotting
each sample in the top plot (green lines). It can be noted that the posterior distribution is a

much tighter distribution than the prior, and it is consistent with the data.

2.2 Gaussian Processes

The previous section discussed Bayesian learning in a general setting. We now proceed towards
a particular (albeit powerful) modelling choice, Gaussian processes (GPs). Beginning with a
general class of basis function models, we demonstrate how a prior in weight space (w) implies
a prior in function space (f). From there, we demonstrate an equivalent view of basis function
models in terms of kernels and show how this perspective enables i) a powerful specification

of priors directly in the function space, and ii) the use of infinitely many basis functions.

2.2.1 Basis Function Models

Basis function models (also known as generalized linear models) are those that can be written

in the form
f(x) Zzwz’¢i(x>a (2.10)

where x € R? is a d-dimensional input, ¢; : R? — R for i = 1,...,m are d-dimensional basis
functions, and w € R™ are parameters (or weights). This form is extremely general. In fact,
almost all machine learning models can be interpreted in this way from linear models to
deep learning models and Gaussian processes. The one-dimensional linear example from the

previous section in eq. (2.2) can be written in this form where

¢1(z)==z, and @p=1. (2.11)
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In this example, the basis functions are linear; however, they can be non linear functions
in general. We will proceed with the same likelihood as given in eq. (2.8) that assumes the

training observations are corrupted by 4.i.d. Gaussian noise with variance 0. This gives

Pr(y|w) =N (y|®w, 0°L,), (2.12)
—_——

likelihood

where we have generalized our notation such that y € R™ contains the observations from the
dataset {x;,y;}"_, of size n, ® € R™ ™ is a matrix whose ith column contains the evaluation of
¢; on all n training points, and I,, e R"*" is the identity matrix. As in the previous example,

we will also proceed assuming a Gaussian prior on the weights Pr(w) to give

Pr(w)=N(w|0,57"), (2.13)
M
prior
where S € R"™*™ is a symmetric positive definite precision matrix, and we have assumed a
zero-prior mean for ease of exposition. Conveniently, because of the choice of the Gaussian
prior, the posterior of the discussed model is also Gaussian and can be directly computed in

closed form. A simple derivation of this result can be seen by writing the natural logarithm

of Bayes’ rule eq. (2.5) to give

logPr(w|y) =logPr(w)+ logPr(y|w)—logPr(y)
1

1
=——w'Sw—— (dw—y)'1,(®Pw—y)+const.,
2 202

where “const.” contains all the terms that do not depend on w which includes normalizing
terms from the likelihood and prior, as well as the entirety of the model evidence. Expanding,

and completing the square gives
logPr(wly) = —%(w—p,)TEl (wW—p)+const.,
where
p=022®"y and B '=02®"7®+S. (2.14)
We can recognize this quadratic form as the log probability density of the multivariate Gaussian
Pr(wly) =N (w|p, 2). (2.15)

The proceeding equation demonstrates how inference can be analytically performed on a basis
function model, requiring O(m?n +m3) time for the matrix operations involved, in general.
Returning to our example, the posterior in the bottom plot of fig. 2.2¢ is evidently a Gaussian

distribution. In this way, sampling from the posterior (the green dots) was performed using
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multivariate Gaussian sampling techniques.
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(a) Maximum likelihood predictor. (b) Bayesian prior. (c) Bayesian posterior.

Figure 2.3: Comparison of maximum likelihood and Bayesian approaches to inference. The statistical model employed is the
linear model y = w1z + w2 and the top plots demonstrate inference in function space (x, y) whereas the bottom plots show
inference in weight space (w1, w2). In the top plots, the training data is shown in black which was generated by the dashed black
line and corrupted by independent Gaussian noise. The parameter values of the dashed black line is shown by a black X in the
bottom plots. The maximum likelihood predictor is given in red. For the Bayesian models, the blue line denotes the posterior
mean, the shaded region denotes the 95% confidence interval, and the green lines and dots denote samples from function and
weight space, respectively. The contour plots in the bottom row from left-to-right contain the likelihood, prior and posterior.

Predictive Posterior

To derive the predictive posterior, observe that the basis function model in eq. (2.10) is linear
in w. Observing that a linear function of Gaussian random variables is also Gaussian, we can
conclude that the predictive posterior is Gaussian since the posterior Pr(wly) is Gaussian.

Its form is given by

Pr(f(x*)[y, x) =N (f(x*)|o(x")" 11, p(x*)" S (x")), (2.16)

where ¢(x*) € R™ contains the evaluations of all m basis functions at x*. As a result of
symmetry of the Gaussian distribution, it is not surprising that the predictive posterior
mean is simply the evaluation of the basis function model (eq. (2.10)) using the posterior
mean, i.e., using w = p. Additionally, note the quadratic form of the predictive posterior
variance which shows that the predictive uncertainty grows with the magnitude of the basis
functions. Using our example of linear basis functions in eq. (2.11), the uncertainty grows
with the magnitude of x, as we would expect for a linear model. This can be seen in the
top plot of fig. 2.3c where the shaded region shows two standard deviations from the mean.
The top plot of fig. 2.3b also shows the “predictive” prior mean (blue line) and two standard

deviations (shaded). This is also Gaussian (since the prior is Gaussian) and is given by

Pr(f(x*)) =N (F()[0, b(x*)7S ™ (x7)). (2.17)
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2.2.2 Function-space View

Equivalent relations to those derived in the previous section can be found by taking an
alternative view. We call this different perspective a function-space view since inference is
performed directly in function space without ever explicitly discussing basis functions or pa-
rameters/weights. We will see that in some scenarios this perspective will be computationally
preferable to the previous approach (that we call a weight-space view), and it is certainly more
interpretable.

To begin, consider the n noise-free function values f = {f(x1),..., f(x,)} at the inputs
X ={x1,...,X,}. Extending the prior from eq. (2.17) to multiple function values, it is easy to

see that the prior over f is jointly Gaussian and is given by
Pr(f) =N (f|0, ®S~'®") =N/ (f]|0, K(X, X)), (2.18)

where we have introduced K(X, X) = ®S7'®” € R"*". The matrix K(X,X) describes the

prior covariance between the random variables f such that

[K(X, X)]ij =(x:)" 87 p(x;) =E[ £ (x:) f ()| = k (i, %), (2.19)

where we have introduced k : R? x R? — R which we shall refer to the prior covariance
kernel (also called the covariance function). The kernel describes the prior covariance between
the function values at two arbitrary points in d-dimensional input space. It is all that is

required to define a zero mean Gaussian process:

A Gaussian process (GP) is a collection of random variables, any finite number of

which have a joint Gaussian distribution.

A Gaussian possess is defined entirely by a covariance function k, and a mean function which
we have assumed to be zero for the purpose of clarity®. Equation (2.18) demonstrates precisely
that when using the covariance kernel k, a finite collection of (n) observations of the target

are jointly Gaussian.

Predictions with Noise-Free Observations

Writing the prior in eq. (2.18) using a covariance matrix constructed by the kernel k& immedi-
ately suggests a simple alternative inference procedure when the observations are noise-free.
Consider f € R™ to be the n noise-free observations of the target, and take f* to be the
response at a test input x*. Since a finite collection of targets is assumed to have a joint
Gaussian distribution in Gaussian process modelling, we can extend the collection f of n
random variables in eq. (2.18) to write the joint prior over training observations f and the test

observation f* as the following joint Gaussian distribution whose (n+1) x (n+1) covariance

2 A mean function can be easily incorporated as well. One way to account for a non-zero prior mean is to simply consider the
random variables f to be realizations of a function with the mean function subtracted. Therefore, any realizations of f need to
have the mean function added to it before interpretation.
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(a) Prior covariance matrix, K(X, X). (b) Three samples of f from the prior.

Figure 2.4: Visualization of the Gaussian process covariance, and samples on a finite set of points X.

matrix is formed by the kernel k

f 0 KX, X) k(X,x*
Pr(f, [*)=N , ( ) K ) . (2.20)
f* 0 k(x*, X) k(x*, x*)
To derive the posterior distribution, we need to restrict this joint prior distribution to contain
only realizations that are consistent with the training observations f. In probabilistic terms,
this simply describes conditioning the joint distribution on the training observations f.

This can be performed using standard Gaussian identities as follows (e.g., (Rasmussen and

Williams, 2006, appendix A.2)):
Pr(f*|f) =N (f*|k(x*, X)K(X, X)7'f, k(x*, x*) —k(x*, X)K(X, X)'k(X, x*)). (2.21)

This is an elegant result since we were able to go from the prior directly to the posterior
without explicitly considering the weight space at all. This posterior is also easy to compute,
requiring only linear algebra operations, and the computations can be trivially extended to

evaluate the predictive posterior on a set of test points X* by simply replacing x* with X*.

Infinite Basis Functions

Unfortunately, the posterior in eq. (2.21) is not defined for all basis function modelling choices.
This is because the prior covariance matrix K(X, X) in eq. (2.18) is a semi-positive definite
matrix and may be singular such that K(X, X)~! is not defined. For instance, it will be
singular if m < n since the covariance is of rank at most m. One approach to help deal with
this singularity is to expand the number of features m. At first glance this would appear to
be an expensive solution. After all, we are considering increasing the complexity of our basis
function model so it is reasonable to expect this would come with an increase in cost. When we

were considering inference from a weight-space perspective, computation of the posterior in
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(a) Posterior covariance matrix after conditioning on index 10. (b) Three samples from the posterior after conditioning on
index 10.

Figure 2.5: Visualization of the Gaussian process posterior, and samples on a finite set of points. A single noise-free observation
is assumed.

eq. (2.15) cost O(m?*n+m?) time, giving an expensive cubic scaling in the number of features.
However, we will see that by taking a function-space perspective, the cost of inference can be
independent of the number of features if we use the kernel in a clever way.

To begin, consider that eq. (2.21) only requires evaluations of the kernel k, not the basis
functions themselves. Therefore, if we can evaluate a kernel without explicitly computing the
inner product between basis functions then the cost of kernel evaluations will be independent
of the number of features, and so will the cost of evaluating the posterior in eq. (2.21). This is
possible but we require some properties for this kernel, namely that it must admit a symmetric
and positive semi-definite covariance matrix K (X, X) for any collection of points in R%. These
come directly from the requirements of the covariance of a Gaussian distribution. Fortunately,
such kernels exist, for example, consider the exponentiated quadratic kernel (also known as

the squared exponential kernel):
k;(xi,xj)zexp(—%||xi—xj||§). (2.22)

It can be shown that the exponentiated quadratic kernel corresponds to the inner product
of an infinite number of basis functions, i.e., m = o0 when using this kernel. For example, we
can obtain the exponentiated quadratic kernel as the inner product of an infinite number of
Gaussian-shaped basis functions (see (Rasmussen and Williams, 2006, sec. 4.2.1)). This is a
remarkable property: by using such a kernel, we can expand the capacity of our model from
one using a finite number of basis functions to one using an infinite number of basis functions
without incurring any additional cost.

Let us now try to get a better grasp of the Gaussian process prior defined by the covariance
kernel k. Figure 2.4a shows the prior covariance matrix using the exponentiated quadratic ker-
nelin eq. (2.22). The matrix shows the covariance between 15 points X in d = 1 dimension such

that x; =1, i.e., the value of x is the same as its index. By observing fig. 2.4a it is immediately
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index 10. on index 10.

Figure 2.6: Visualization of the Gaussian process posterior, and samples on a finite set of points. An observation that is corrupted
with additive Gaussian noise is assumed.

evident that points closer together have higher covariance. For example, k(x;=1, x5=2) at
index (1, 2) has greater covariance then k(x;=1, x3=3) at index (1, 3). It seems sensible that
locations far from one another should have lesser covariance, this is one of the properties of
the exponentiated quadratic kernel. The three coloured curves in fig. 2.4b show three samples
drawn from the zero-mean Gaussian distribution given in eq. (2.18) with the covariance matrix
given in fig. 2.4a, and lines were drawn between the 15 points in X to aid visualization. Since the
set X is arbitrary, the procedure used the create the samples in fig. 2.4b could be extended by
expanding the set X to contain infinitely many pointsin R, giving a distribution over functions.

While fig. 2.4 visualized the GP prior, fig. 2.5 visualizes the GP posterior after the prior has
been conditioned on a single observation at x;9 = 10 given by the black x in fig. 2.5b. Once
again, the three coloured curves in fig. 2.5b show three samples, but this time they are drawn
from the posterior Gaussian distribution given in eq. (2.21) with the covariance matrix given
in fig. 2.5a and the mean given by the dashed black line in fig. 2.5b. Also shown in fig. 2.5b, is
the shaded region that shows one standard deviation (square-root of the diagonal of fig. 2.5a)
from posterior mean. Evidently the posterior variance vanishes at x;9 as would be expected
since we are absolutely certain about the value of the function at this point. Additionally, it
can be seen that the posterior returns to the prior as we move away from x;q, indicating that
we know little about the function values far from this point. One of the beautiful features of
Gaussian processes is that the predictive posterior statistical moments are given in closed form.
This allows easy interpretation without needing to sample the posterior since the posterior
mean (dashed black line) gives the expectation of the prediction as a point estimate, while
the posterior variance (visualized by the shaded region) gives the posterior uncertainty which
gives some measure of confidence in a prediction. Lastly, note that it is trivial to extend these
computations to multidimensional inputs by simply changing the evaluation of the covariance

kernel in accordance with eq. (2.22).
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Predictions with Noisy Observations

Extending the number of features m to infinity helped improve the rank of of K(X, X);
however, it still does not guarantee that the matrix will be full rank. As an example, consider
the scenario where two input points with indices ¢ andj are identical such that x; = x;. In
this case the ith row (or column) of K(X, X) will be identical to the jth row (or column) and
the covariance will be rank deficient no matter what positive semi-definite kernel is used. A
definitive way to deal with such singularities is to assume all observations are corrupted by
additive independent Gaussian noise. Although other forms of noise are certainly possible,
additive 7.7.d. Gaussian noise is a common assumption and one that is made throughout this
thesis. In fact, it is typical that we do not have access to the function values themselves, but
noisy versions thereof (as we had assumed in eq. (2.1) in the original example of this chapter).

Additive i.i.d. Gaussian noise with variance o2 gives the following prior over the training

observations

Pr(y)=N(y

0, K(X, X)+0°L,), (2.23)

whose covariance differs from the prior over f (in eq. (2.18)) by the addition of a diagonal
matrix. We can then modify eq. (2.20) to give the joint prior over noisy training observations

and a test point as follows:

o v || o K(X, X)+02, k(X,x")
Pr(y, f )—N([ e ”[ 0 ], [ K(x*, X) Fxc" x°) ]) (2.24)

We can now follow the Gaussian conditioning expression in eq. (2.21) to condition the joint in

eq. (2.24) on the noisy observations y as follows:

Pr(f*ly) N(f*‘]E[f*], COV[f*] ), where
E[/*] = kix", X) (K(X, X)+021n)_1f, and (2.25)

cov[ f*]=k(x*, x*) —k(x*, X) (K(X7 X)+U2In) 71k(X, x*).

The preceding equation describes the key predictive equations for Gaussian process regression®.

Also, it can be shown that the predictive posterior in the preceding equation is identical to
the predictive posterior we had derived from a weight-space approach in eq. (2.17) provided
we use the kernel k(x;, x;) = ¢(x:)7S ' p(x;) from eq. (2.19). This observation means
that we arrive at the same predictive posterior if we take a weight-space or a function-space
perspective, although the two approaches have differing computational complexities. Based

upon the algebraic operations in their respective relations, computation of the predictive

3For the outline of a stable algorithmic implementation of Gaussian process predictions, please see (Rasmussen and Williams,
2006, alg. 2.1).
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posterior generally scales as follows for the two approaches.

Perspective Time Storage
Weight-Space (eq. (2.16))  O(nm?*+m?) O(nm+m?) (2.26)
Function-Space (eq. (2.25)) O(n?) O(n?)

It is therefore evident that the weight-space view is generally preferred when the number of
basis functions (m) is less than the number of observations (n). When the training dataset
size n is not prohibitively large, the function-space perspective is generally preferred since it
allows a potentially infinite number of features (m — o0) with no additional cost, and it allows
a wealth of interpretable kernels to be used for specification of the prior (as we will discuss in
the following section).

In fig. 2.6, we extend the visualization of fig. 2.5 by again conditioning the prior Gaussian
distribution on index x;y but this time we assume the observation is corrupted by additive
Gaussian noise with variance o2 = 0.1. In contrast to the example of fig. 2.5, we see that the
variance does not vanish at x;¢ since we are not completely certain about the value of the

function at this point because of the noise in the observation.

2.2.3 Covariance Kernels

Here we discuss how the choice of covariance kernel k affects Gaussian process inference.
Specifically (and quite simply), choosing a kernel is synonymous with selecting a Gaussian
process prior. This connection is clear when the zero-mean GP prior eq. (2.23) is inspected,
since the kernel k is the only element we have control over in this equation. Kernels offer an
elegant and easily interpretable way to specify priors, allowing practitioners to incorporate
high-level domain knowledge about a learning problem such as stationarity, differentiability,
periodicity, scale, expected change over a distance, and can even enforce complicated linear
operator constraints. Kernel selection is an important topic for effective inference with
Gaussian processes and this section is intended as an introduction to this field. The interested

reader is referred to (Rasmussen and Williams, 2006, chapter 4) for a thorough overview.

Flexibility To begin, it is important to consider the dimension m of the feature expansion of
a covariance kernel since this does affect the flexibility of a Gaussian process model. These
features ¢: RY —R™ can be seen in eq. (2.19) and we have considered cases where m is finite, as
well as infinite. In the case where the kernel can be represented exactly by a finite basis function
expansion (i.e., a finite m), the resulting Gaussian process will have a finite capacity to model
observations. We call a kernel with a finite basis function expansion degenerate. For example,
consider the example in fig. 2.3 where linear basis functions were employed. Clearly the resul-
tant Gaussian process does not have the flexibility to model an arbitrary non-linear function no

matter how many observations are provided. Choosing a kernel with these basis functions are a
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Matérn-5/2 k(r)=(1+~/5r+3r?)exp(—+/5r) Twice differentiable
Matérn-3,/2 k(r)= (1 + \/§r) exp ( — \/gr) Once differentiable
Matérn-1/2 k(r)=exp(—r) Non-differentiable

Table 2.1: Popular Matérn kernels. The shorthand r = sz —X; ‘ ‘2 was used where x;, x; are the kernel inputs. The differentiability
statements refer to mean-square differentiability of the Gaussian process that uses the respective covariance kernel. All kernels
listed admit a mean-square continuous Gaussian process.
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Figure 2.7: Realizations of zero-mean Gaussian process priors using various Matérn kernels.

good choice if we know the resultant function is linear a priori, but it will clearly be a poor choice
if there is a possibility the function is non-linear. Conversely, many kernels used in practice
have m = oo such that the Gaussian process has the capacity to model increasingly complicated
functions as more data arrives. Such a model is considered non-parametric. In addition, many
kernels with an infinite basis function expansion admit a GP that will be universally consistent,
meaning that any function can be approximated to arbitrary precision. The exponentiated
quadratic kernel (eq. (2.28)) is one such example. Universal consistency is a remarkable prop-
erty which implies that the Gaussian process prior has support over the space of all functions
and therefore will be able to recover the true underlying function in the limit of infinite data,
even if the initial prior is poorly specified. We will see throughout this thesis that in practice

a trade-off occasionally needs to be made between flexibility and computational complexity.

Differentiability The kernel can be chosen to admit a Gaussian process that has a specified
level of smoothness. For example, the Matérn class of kernels can be used to specify Gaussian
processes with varying levels of differentiability. Table 2.1 specifies several popular Matérn
kernels that are zero-, one- and two-times mean-squared differentiable. The exponentiated
quadratic kernel (eq. (2.22)) is also in the Matérn family, being infinitely differentiable.
Realizations of Gaussian processes using these kernels are shown in fig. 2.7. It is evident that
the function behaviour varies dramatically based on the level of smoothness and therefore if a
given level of differentiability is known a priori, this is powerful information that can be used

to select an appropriate kernel to restrict the class of functions under the prior appropriately.
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Stationarity A covariance kernel k(x;, x;) is stationary if it can be written as a function
of x; —x;. Stationarity means that the covariance between two points in the input space
depends only on the difference between the two points in input space and does not depend
on the absolute location of the points. This has the effect of assuming the Gaussian process
prior behaves similarly throughout the input space, which is often a logical presumption.
For example, the exponentiated quadratic kernel in eq. (2.22) and the Matérn kernels in
table 2.1 are all stationary. If desired, a stationary kernel can be made non-stationary using

a non-linear input warping to give the following modified kernel

k(g(x:), 8(x))), (2.27)

where g : R? — RP is an arbitrary non-linear function, and the number of outputs p > 1 can
also be arbitrary. For example, Snoek et al. (2014) introduce a simple non-linear warping that

can account for non-stationarity.

Periodicity Function periodicity can also be modelled through an appropriately cho-
sen covariance kernel. A periodic prior can be employed using the warping function
g(x) = [cos(z), sin(m)]T for d = 1 dimensional inputs and applied as described in eq. (2.27).
This periodic warping is applied to the Matérn-3/2 kernel in fig. 2.7 where the realization

exhibits periodic behaviour, as expected.

Variance & Lengthscale To account for functions that have differing observation magnitudes
and input scales, modifications can be made to all discussed kernels. As an example, we
will re-write the exponentiated quadratic kernel originally given in eq. (2.22) to introduce

additional hyperparameters as follows:

k(x;, x;) :08 exp(—%(xi—xj)TAl(xi—xj)> , (2.28)

dxd i a symmetric positive definite matrix

where o2 > 0 is the kernel variance, and A € R
describing the kernel lengthscale. The kernel variance describes the magnitude of the function
values of the Gaussian process prior. Quite simply, if o is doubled, the vertical magnitude of
the realizations in fig. 2.7 would double.

The kernel lengthscale A describes the rate at which the function is expected to change
with respect to a change in input space. In the simplest case, if A = ¢2 I; then the kernel
is commonly called an isotropic kernel since it is simply a function of the radius ||x; —x;||2
from either of the input points. In this case, the parameter ¢ > 0 describes how “sharp” the
realizations will be (a smaller ¢ value gives sharper functions). As another interpretation, this
prior states that you would not be able to extrapolate more than O(¢) units from your data.
Figures 2.8a and 2.8b plot a sample from a two-dimensional Gaussian process prior using the

isotropic exponentiated quadratic kernel with two different values of /. The lengthscale can
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also be visualized by the black curve in each plot where the radius of the black curve from the
black dot indicates the lengthscale in that respective direction. Specifically, the black curves
show a contour of equal prior covariance with the function value at the black dot. It can be
seen that the function realization with the smaller ¢ in fig. 2.8b is more “wiggly” and changes
value more rapidly with respect to the input coordinates.

If A = diag[¢3, ..., (%] then the kernel has axis-aligned lengthscales and is commonly
referred to as the ARD (automatic relevance determination) exponentiated quadratic kernel
because it can prune irrelevant input dimensions by growing the corresponding lengthscales.
Plotted in fig. 2.8¢ is a realization of a two-dimensional Gaussian process prior using an ARD
exponentiated quadratic kernel where it can be seen that there are different lengthscales along
the coordinate axes. Along the first input dimension z1, the lengthscale ¢; is large and the
function values vary slowly. If we take ¢; — oo the realization in fig. 2.8c would not vary at all
along x; and the effect of this input dimension would be entirely eliminated.

A non-diagonal A matrix can be seen as an application of the ARD exponentiated quadratic
kernel applied after a rotation of the input space coordinate axes. Figure 2.8d plots a two-
dimensional sample drawn from a GP prior with a dense A matrix. It can be seen that the black
ellipse indicating the lengthscale in fig. 2.8d is rotated with respect to the ellipse in fig. 2.8¢c
such that its principal axes are no longer aligned with the input coordinate axes. To apply
lengthscales to the Matérn kernels in table 2.1, substitute r = \/(Xi—Xj)TA_l(Xi—Xj). This

is simply a replacement of Euclidean distance between inputs with the Mahalanobis distance.

Neural Tangent Kernel While not necessarily a popular kernel, the neural tangent kernel is
an interesting covariance function that demonstrates the power and generality of Gaussian
processes. It has been shown that deep, infinitely wide Bayesian neural networks are Gaussian
processes under certain assumptions (G. Matthews et al., 2018; Lee et al., 2018; Neal,
1995). Further, Jacot et al. (2018) showed that during training by gradient descent, the
same network converges to the so-called neural tangent kernel. This is a fascinating result
which has led to many interesting and practical developments. For instance, it has allowed
exact Bayesian inference to be performed on deep and infinitely wide neural networks, even
when complex architectures are considered such as convolutional neural networks with global

average pooling (Arora et al., 2019).

2.3 Model Selection & Model Evidence

Since the beginning of this chapter, we have assumed that a single model is selected a priori
and then inference is performed. Unfortunately, in many scenarios, a practitioner may not
have enough insight into a problem to specify a single good model for a learning problem.
As an example, a practitioner may not know a priori which of two Gaussian process priors

will perform better on a given learning problem. This section will discuss how to deal with
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Figure 2.8: Samples from a two-dimensional Gaussian process prior using the exponentiated quadratic kernel in eq. (2.28) with
various values of A. The black curves show a contour of equal prior covariance with the function value at the black dot. The
radius of the black curve from the black dot indicates the lengthscale in that respective direction.

uncertainty over candidate models.

We begin by posing the model selection problem more concretely. We assume that a
model is defined by the vector @ such that all candidate models can be determined by a
specific value of 8. We refer to the vector 8 as a set of hyperparameters. As an example,
the set of hyperparameters of a Gaussian process prior might include the kernel variance o3
and lengthscale A of the exponentiated quadratic kernel in eq. (2.28), as well as the training
observation noise variance o2. The model selection problem simply involves selection of the

models that perform best out of the candidates within the space of 6.

2.3.1 Model Evidence

The marginal likelihood or model evidence presented in eq. (2.6) is instrumental in Bayesian
model selection. We will therefore begin by describing how the model evidence is computed
for Gaussian processes, as discussed in section 2.2. To begin, we will update our notation such
that Pr(y|@) denotes the model evidence for the model with hyperparameters 6.

While evaluation of the model evidence is generally intractable for an arbitrary Bayesian
model, in the case of a Gaussian process it can be performed analytically which is a tremendous

advantage for the purposes of inference and model selection. Specifically, evaluating the
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marginal likelihood, of a Gaussian process simply involves evaluating the GP prior on the
training dataset. By the definition of a Gaussian process, the GP prior evaluated on the
training dataset is a Gaussian distribution (given in eq. (2.23)) and therefore evaluating
the model evidence simply involves evaluating a multivariate Gaussian distribution with
dimension n. To evaluate this multivariate Gaussian, there are two computational approaches
that one may wish to take, a weight-space approach, and a function-space approach. While
the two approaches are mathematically equivalent, the computational complexities differ in
the same manner as the predictive posterior computations, whose computational complexities

are summarized in eq. (2.26).

Weight-Space Approach From the weight-space approach of section 2.2.1, the log of the

model evidence can be computed as

n n 1 1 1 1 _
logPr(y|0) = —§log(27r)—§log(02) —|—§log(]SD + §log(\2\) — TﬂyTy—l—yiTE ', (2.29)

where p and X are given in eq. (2.14), and !A‘ denotes the determinant of a square matrix A.

For computational reasons, the weight-space approach is generally preferred when n>m.

Function-Space Approach From the function-space approach of section 2.2.2, the log of the

model evidence can be computed as

logPr(y|0) = —1log|K(X, X)+0°L,|—1y" (K(X, X)+0°1,)'y— Zlog(2n) . (2.30)
& ~ < ~ - ——
Complexity Data Fit Normalization

For computational reasons, the function-space approach is generally preferred when n < m.

The terms in the preceding equations have been labelled for reference in later discussions.

2.3.2 Type-I Inference

We can now begin discussing how the model selection problem can be addressed by introducing
a Bayesian approach that allows us to move from a prior over models to a posterior over
models. This is effectively an inference procedure over hyperparameters, @, rather than an
inference procedure over parameters, w, described in the earlier sections of this chapter. In
this way, it is effectively a meta-inference procedure. Applying Bayes’ rule (eq. (2.5)) at the

level of hyperparameters gives the posterior over @ as follows:

Pr (y‘@) Pr (0)
Pr (y) '

The distribution Pr(0) is referred to as the hyper-prior and is a prior over models that reflects

Pr(6ly) = (2.31)

a practitioner’s prior belief about which model is best. Pr (y‘O) may be recognized as the

marginal likelihood (eq. (2.6)) of a model with hyperparameters 6. Lastly, the marginal in
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(a) Pr(A=1]y)=0.18 (b) Pr(A=0.1%|y) =0.82
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(c) Predictive posterior considering model uncertainty.
Figure 2.9: Demonstration of posterior computation over models (type-I inference). Both models use a Gaussian process prior
given by an exponentiated quadratic covariance kernel in eq. (2.28) with og =1 and with varying values of lengthscale A. Also,
training observations (black) are corrupted with 7.7.d. Gaussian noise with variance 02 = 0.12 for both models. The background
contours show the predictive posterior probability (the colours use the same scale for all plots). Note that the predictive posterior

is plotting Pr(y*|x*) rather than Pr(f*|x*) which takes into account the independent Gaussian noise corrupting the input data.
The hyper-prior over both models are equivalent such that Pr(A=1)=Pr(A =0.12) =0.5.

the denominator can be computed as

Pr(y) = f Pr(y|6)Pr(6)do. (2.32)

Figure 2.9 shows an example computation of the model selection posterior for two Gaussian
process models where 8 = A the lengthscale of the exponentiated quadratic kernel in eq. (2.28)
for a d=1 dimensional learning problem. For both models considered, the hyper-prior Pr(A)
is equivalent (both are 0.5), and the posterior probability mass is given under each plot. Each
model has a different interpretation of the data with the long lengthscale model in fig. 2.9a see-
ing a smooth curve with several outliers in the middle of the plot whereas the shorter lengthscale
model in fig. 2.9b sees a large vertical wave in the middle of the plot. The shorter lengthscale
model has greater posterior probability; however, both models have reasonable mass under
the posterior indicating that there is still uncertainty about which model is preferred.

When making predictions, we would like to take into account our uncertainty over models.
Applying the same rules of probability, we can write the predictive distribution over the

function f* at test input x* as follows:
Pr(f*ly) = f Pr(f*[y, 0)Pr(6]y)de, (2.33)

where Pr( f* |y, 0) is the predictive posterior of a model with hyperparameters 8 that is given
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by eq. (2.7) in general (in the case of Gaussian processes, it is given by eq. (2.16) or eq. (2.25)).
Ultimately, Bayesian inference is conducted at two levels simultaneously: inference over
parameters and inference over models (hyperparameters). Returning to the example in
fig. 2.9, the predictive posterior that accounts for model uncertainty is a sum of the two

models weighted by the posterior over models, as follows:
Pr(f*ly) = 0.18 Pr(f*|y, A=1)+0.82 Pr(f*|y, A=0.1%),

where the predictive posteriors of each model are shown in figs. 2.9a and 2.9b, respectively,
and the predictive posterior that accounts for model uncertainty is shown in fig. 2.9c. Note
that this posterior is no longer Gaussian but is instead a mixture of Gaussian distributions.
In general, the posterior in eq. (2.31) cannot be tractably computed in closed form and must
be estimated numerically or approximated. A common approach for numerical estimation
of the posterior can be achieved through the use of Markov chain Monte Carlo (MCMC)
techniques which are applied in chapter 5. The following section discusses a particular
simplification of the Bayesian approach discussed here. To distinguish the two strategies, the
Bayesian approach outlined here is commonly referred to as type-I inference. For interested

readers, further details about the type-I inference procedure can be found in (Neal, 1995).

2.3.3 Type-II Empirical Bayes

This section discusses a simplification of the type-I Bayesian model selection problem outlined
in the previous section. The simplified approach is commonly referred to as type-II inference,
or empirical Bayes. Quite simply, in a type-1I inference approach a single model is selected

the maximizes the model evidence. This can be written as follows:

6* =argmax Pr(y|6), (2.34)
0

where 8% describes the selected model. Under certain conditions, the posterior eq. (2.31)
will be tightly peaked around 6* and type-II inference can be seen as an approximation of
type-I inference. In the presence of abundant data and relatively few hyperparameters, this
approximation can be quite good?.

The model evidence is an attractive objective for hyperparameter estimation since it natu-
rally balances model flexibility with the model’s ability to fit the dataset, admitting a Bayesian
interpretation of Occam’s razor. This trade-off can be seen by observing the terms in eq. (2.30),
each of which have a clear interpretation. The term labelled “complexity” depends only on the

data inputs X and penalizes high model flexibility®. The term labelled “data fit” is the only

4Note that in contrast, making this same maximum likelihood approximation to the posterior Pr(w|y) over the parameters w
will often give very poor results since the number of parameters m is typically very large and possibly infinite.

5Model flexibility may be difficult to envision for a non-parametric model. Specifically, the complexity term penalizes a slowly
decaying eigenspectrum of the covariance matrix which generally occurs with smaller kernel lengthscales. Therefore, a kernel
with a large lengthscale (admitting smoother functions) is favoured over a kernel with a small lengthscale (i.e., admitting sharper
functions) under this penalty. Also influencing the complexity is the scale of the eigenvalues which relates the kernel variance
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term containing the training responses y and reflects how well the responses are modelled by
the marginal Gaussian distribution. The final term is simply a normalization constant and
depends on nether the training set or the hyperparameters. Gradient-based optimization is
commonly used to maximize the model evidence when the hyperparameters 6 are continuous
but it should be considered that the model evidence may have multiple maxima in 6.

We can illustrate the Bayesian interpretation of Occam’s razor through a simple example
of selecting a Gaussian process prior on a dataset with a single training instance. Specifically,
we will consider the exponentiated quadratic kernel in eq. (2.28) with various values of kernel
variance 0y, and we will assume that the single training observation y = 1 is noise-free (such
that f =y). Figure 2.10a plots the model evidence Pr(y'|og) for three different values of oy
across a range of possible observation values 3. It is easily seen that of the three curves, the
GP prior given by oy =1 provides the maximal model evidence at the true observation value
of ¥' =y =1 indicated by the grey vertical line. Figure 2.10b shows the breakdown of the log-
evidence at the true training observation, logPr(y|og), based upon the decomposition given in
eq. (2.30). It can be seen that the choice of oy =1 is a trade-off between data fit and complexity
since of the three oq choices, og = 1.5 provides the best data fit, g = 0.5 is the least complex,
and oy = 1 is in between on both data-fit and complexity. To understand what complexity
means, observe in fig. 2.10a that the most complicated prior with og = 1.5 has the ability to
represent a far greater range of possible observation values ¢’ than the simplest model og=0.5.

While empirical Bayes (evidence maximization) can be an effective means of model
selection in many instances, it should be used cautiously since it can suffer from several of

potential issues:

o Type-II inference underestimates uncertainty. This is not surprising since type-I1
inference is effectively ignoring uncertainty over models whereas a type-I approach takes
this uncertainty into account. This effect can be seen in the example of fig. 2.9 where a
shorter lengthscale of A =0.1%2 would have been selected out of the two options considered
from type-II approach. The type-II predictive posterior is therefore shown in fig. 2.9b
where it is clear that the predictive posterior underestimates uncertainty around z =0.5

relative to the type-I predictive posterior shown in fig. 2.9c.

o Type-II inference is not immune from overfitting. Cases where many hyperpa-
rameters are being estimated by evidence maximization are liable to overfit, for instance.
As an example, in fig. 2.10a if we were estimating the GP prior mean in addition to
the variance oy, the maximum evidence would occur at a delta spike about y = 1,
i.e., Pr(y/|@) =0(y' —1). This pathological GP prior which would give infinite evidence

but would clearly be a silly model to use given a single training observation.

In general, empirical Bayes is safe from these concerns when the number of hyperparameters

is far less than then number of training observations (i.e., when |8] «<n).

and noise variance (smaller variances are favoured).
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tion values y’ for three values of hyperparameter og. breakdown refers to the terms in eq. (2.30).

Figure 2.10: Comparison of three Gaussian process priors on a dataset with the single observation y = 1. The plots illustrate a
Bayesian interpretation of Occam’s razor for model selection by maximization of model evidence.

2.4 Gaussian Process Approximations

This section considers approximate Bayesian inference on Gaussian processes. This may seem
bizarre to some, since we have shown that Gaussian processes are a rare instance of Bayesian
inference where computations can be performed analytically, so why would we want to approxi-
mate? One reason is that performing exact Gaussian process inference on massive datasets can
be prohibitively expensive. Another reason is that for some applications (e.g., classification
learning problems that require a likelihood function for which a GP prior is not conjugate),
Gaussian processes are not analytically tractable. This section will briefly introduce some

approximate Gaussian process methods and set the stage for the later chapters of this thesis.

2.4.1 Sparse Gaussian Processes

To begin, we will consider the problem of scaling Gaussian processes to large quantities of
training observations. The concern is that the Gaussian process inference procedure of a
non-degenerate kernel natively scales unfavourably with O(n?) storage and O(n?) time, as
was discussed in section 2.2. These complexities generally make Gaussian process modelling
challenging beyond modestly sized datasets. Towards this end, much effort has been placed in
the literature to scale Gaussian processes more favourably, and indeed this is one of the goals
of the present thesis. Most of these techniques are considered to be “sparse” in some sense and
are therefore frequently called sparse Gaussian processes. Sparse approximations are made
for tractable inference because large scale Gaussian process inference natively results in the
manipulation of extremely large or even infinite-dimensional objects®. There are a variety of

different types of sparse Gaussian process approximations which can be broadly categorized

6As an example, consider the weight-space approach of section 2.2.1 which would result in algebraic operations with
infinite-dimensional matrices when a non-degenerate kernel is employed (such that m = o0).
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into two groups. These groups are discussed in the following sections.

In all cases, sparse Gaussian processes result in a finite dimensional approximation to a non-
parametric Gaussian process’. One may reasonably ask why it makes sense to go through the ef-
fort of setting up non-parametric Gaussian processes with an infinite number of basis functions
only to approximate it by a finite dimensional model. Why not simply begin with a finite di-
mensional parametric model? The reason is because sparse Gaussian processes aim to preserve
those properties of non-parametric Gaussian processes that are challenging to possess when

beginning with a finite-dimensional parametric model. These desirable properties include:

o Quantifying uncertainty caused by lack of data by using Bayesian inference and specif-
ically ensuring correctly large uncertainty estimates in regions with little data. The
limited capacity of parametric models means that even when Bayesian inference is
performed, uncertainty can be severely under-represented far from training data since
there is no incentive for the model to contain basis functions that are unconstrained by

the data in those regions.

o Imposing high-level functional priors on the learning problem. Gaussian process covari-
ance kernels can encode complex and high-level constraints on the form of the functions.
Additionally, kernels can be selected that will guarantee convergence to the correct
function even if the prior is poorly specified (see section 2.2.3). Such prior information
can be challenging to encode in parametric models since priors are typically specified in

an abstract parameter space rather than in function space.

o A capacity to model phenomena that scales with the size of the dataset. A non-parametric
Gaussian process can represent arbitrarily complex functions. Conversely, parametric

models have a finite capacity to represent functions.

The degree to which prior work has been successful in preserving these properties varies. For
instance, the third point about model capacity is often the first to be compromised in the
presence of large quantities of data. This is somewhat illogical since as the size of a dataset
increases so does its ability to explain complex phenomena. Therefore, it would make more
sense to increase model capacity for a large dataset, rather than decrease it. Addressing this
concern is one of the primary goals of this thesis and therefore many of the contributions
within it are developments in various aspects of sparse Gaussian processes. The following two
sections briefly outline several types of sparse Gaussian processes from prior works; however,

specific techniques will be outlined in greater detail in later chapters, where appropriate.

"To avoid potential confusion, we note that the discussed sparse Gaussian process approximations will generally result in
matrices and prior (cross-)covariance matrices that are still dense. This is not to be confused with approaches to scaling Gaussian
processes that choose covariance kernels which admit sparse covariance matrices (for example compactly supported kernels).
This compactly-supported approach will not be discussed.
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Approximating the Gaussian Process Posterior

One approach to sparse Gaussian process approximations is to approximate the Gaussian
process posterior using variational inference (Titsias, 2009). This approach performs approx-
imate inference in the original GP model, as opposed to the methods of the following section
which approximate the model and then perform exact inference. These techniques present
computational and optimization challenges when scaling to high-capacity models, however,
the approach does very well for functions that can be represented compactly and comes with
the advantage that the exact GP prior is maintained.

This thesis does not directly make contributions to Gaussian process approximations of this
type; however, it is a competitive technique against which results are compared throughout the
thesis. We will refer to this approximation as the variational free energy (VFE) approximation,
or stochastic variational Gaussian processes (SVGP) if a stochastic mini-batch approach is
taken as in (Hensman et al., 2013). For a detailed introduction to these techniques see (van
der Wilk, 2019), for example.

Approximating the Gaussian Process Prior

The second group of sparse Gaussian processes approximate the prior (eq. (2.23)) such that
inference is easier. Typically, after approximation of the prior, inference is performed exactly;
however, in some instances additional approximations are employed.

A common approach for sparse Gaussian processes of this type is to approximate a kernel
with a finite basis approximation. Specifically, one may replace an exact kernel k with the

approximate kernel k that is represented as follows:
k(xi, %)~ E(xi, X5) = Y 6p(%:)6p(%5). (2.35)
p=1

where m < m, i.e., the number of basis functions in the approximate kernel are less than the
exact kernel, and ggl for i =1,...,m are the basis functions of the approximate kernel. These
basis functions can take several different forms with perhaps the most common being approx-
imate eigenfunctions of the exact kernel (discussed further in section 4.2) or random features
from the exact kernel (discussed further in section 5.3.1). Commonly, exact Gaussian process
inference is performed with the approximate kernel k by taking a weight-space approach
along with its associated computational properties (see eq. (2.26)). When exact inference is
performed in this way, computational savings are generally only realized when m < n, thus
limiting the number of basis functions that can be retained and subsequently limiting the
model capacity. Some approaches also introduce further approximations at inference time to
bring further computational advantages. For example, chapter 6 introduces an approximate
inference procedure that allows m » n, while chapter 7 provides an additional discrete

relaxation of the prior which allows for fast evaluations.
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The kernel approximation k results in a degenerate Gaussian process that can potentially
underestimate uncertainty far from the training data. A popular solution to this is the
following correction to the kernel approximation in eq. (2.35) that in some scenarios results in

a non-degenerate kernel (Snelson and Ghahramani, 2006)
loxis x3) S K (i, 55) = R, 55)+ 0053, %) (K 063, %5) =R, %)) (2.36)

where 0(x;, x;) =1 if x; =x;, else 0. A Gaussian process using the kernel kK has no additional
capacity compared to the use of the kernel k and the additional correction term is only
non-zero for some basis function approximations. However, this correction often provides a
better approximation to the exact kernel, and can improve the posterior variance far from
training observations. Complexity of exact inference using kernel K is also the same as the
complexity for exact inference with kernel k since the correction in eq. (2.36) only results in
an additive diagonal correction to the prior covariance matrix between training observations.

Another approach that is commonly employed to improve the predictive posterior variance
is to augment the set of basis functions at test time. Once again, this correction is only valid
for some basis function approximations but can improve the posterior variance far from the
training data. This technique is discussed further in appendix D.2.

For the interested reader, Quinionero-Candela and Rasmussen (2005) provide a thorough
overview of various sparse Gaussian process techniques that approximate the Gaussian process

prior.

2.4.2 Gaussian Processes with Non-Gaussian Likelihoods

So far, all discussion of Gaussian processes has assumed that a regression problem is being
addressed where the training observations are all continuous valued. Another common type of
learning problem is classification (for example) wherein the training responses belong to some
discrete categorical set. Gaussian process inference can be performed analytically with a Gaus-
sian likelihood (which we have implicitly assumed throughout section 2.2); however, a Gaussian
likelihood is not appropriate for classification. A solution to this is to use an alternative, non-
Gaussian likelihood, but this generally results in analytically intractable computations. To
account for this, iterative sampling techniques such as MCMC can be used for inference (Neal,
1997, 1998). Alternatively, various approximations can be employed to perform approximate
inference including a Laplace approximation (Williams and Barber, 1998), expectation propa-
gation (Minka, 2001), and variational inference (Gibbs and MacKay, 2000), with the latter two
being the preferred methods over the Laplace approximation in terms of accuracy. This thesis
mainly considers Gaussian likelihoods since our contributions focus on fundamental develop-
ments for Gaussian processes; however, the abundance of classification problems in practice
makes non-Gaussian likelihoods an important topic that will also be discussed. Specifically,

a variational inference approximation is considered for classification problems and other non-
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Gaussian likelihoods in chapters 6 and 7 where the method will be introduced in greater detail.

2.5 Concluding Remarks

In this chapter we presented the background of the methods that will be built upon in this
thesis. Namely, a Bayesian approach to machine learning was introduced, followed by a
detailed introduction to Gaussian processes, a particular modelling choice that is a focus of
the present thesis. In the chapters that follow, we will also cover the technical background of
other areas that are relevant to the particular developments of that respective chapter.

The following chapters present the contributions of the thesis whose objective is to develop
scalable Gaussian processes from two perspectives: i) the ability to perform inference on
Gaussian process models using large quantities of observed data, and ii) the ability to perform
inference with Gaussian processes that have the capacity to model complicated functions.
These objectives are typically competing since scalable solutions to Gaussian processes often
consider one of these goals at the expense of the other. For instance, general (exact) Gaussian
processes may have an infinite model capacity but cannot handle large datasets, whereas
Gaussian process approximations limit model capacity at the expense of the ability to model
complex functions (see section 2.4.1, for example).

With respect to the scope of these objectives, we will consider developing Gaussian
processes that are scalable during both the so-called training stage where model selection is
carried out, and during the so-called deployment (or testing) stage where computation of the
GP predictive posterior is performed upon model deployment. We have seen in section 2.2 that
at the training stage, the necessary operations for exact GPs scale with O(n?) memory and
O(n?) time. Additionally, we had seen that the necessary computations at the deployment
stage generally requires O(n?) memory and time. These complexities can be prohibitive
for both the training and deployment stages, particularly in applications where hardware
limitations are restrictive and when predictions need to be performed in real-time.

To briefly summarize the contributions of the following chapters, in chapter 3 we consider
Gaussian process inference on a problem structure present in many spatiotemporal problems
and develop several algorithms that dramatically reduce the complexity of exact Gaussian
process inference using Kronecker matrix algebra. In chapter 4, we then discuss a novel
Gaussian process approximation by showing how a highly accurate Nystrom approximation of
kernel eigenfunction can use as many as 103 inducing points with little computational expense,
and also show that the eigenfunction approximation is asymptotically consistent in the limit of
infinite inducing points. Chapter 5 subsequently considers a highly general class of Gaussian
process covariance kernels where it is shown that the Gaussian process marginal likelihood
can be computed with a complexity that is independent of the number of training instances
and as low as linear in the number of kernel basis functions. We also show that this class

of kernels is highly general, being able to asymptotically recover any stationary covariance
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function. In chapter 6, a variational inference approximation to the Gaussian process posterior
is considered that allows us to exploit a novel stochastic training strategy whose per iteration
complexity is independent of both the number of training examples and the number of kernel
basis functions. We show that this unique approach enables the use of high-capacity Gaussian
process models on large datasets for regression and classification. Finally, in chapter 7 a
discrete relaxation of a Gaussian process prior is considered that enables fast inferencing on
devices with limited computing resources. We develop a novel variational inference procedure
that exploits Kronecker matrix algebra to compute the variational bound exactly and with a

complexity that is independent of n, allowing rapid inference on large problems.



Chapter 3

Scaling Exact Gaussian Processes

on Multi-dimensional Grids

In this chapter, we propose two methods for exact Gaussian process (GP) inference and
learning on massive image, video, spatiotemporal, or multi-output datasets with missing
values (or “gaps”) in the observed responses. The first method ignores the gaps using sparse
selection matrices and a highly effective low-rank preconditioner is introduced to accelerate
computations. The second method introduces a novel approach to GP training whereby
response values are inferred on the gaps before explicitly training the model. We find the
introduced approaches greatly improve upon state-of-the-art methods in terms of speed,
accuracy, and stability. Both of these novel approaches make extensive use of Kronecker
matrix algebra to design massively scalable algorithms which have low memory requirements.
We demonstrate exact GP inference for a spatiotemporal climate modelling problem with 3.7
million training points as well as a video reconstruction problem with 1 billion points. The

following paper was published from some of the contents of this chapter:

T. W. Evans and P. B. Nair (2018b). “Exploiting Structure for Fast Kernel Learning”.
In: SIAM International Conference on Data Mining. STAM, pp. 414-422

While the chapter (and indeed this entire thesis) focuses on a Bayesian perspective, we
note interesting connections and extensions of this work to a regularization (frequentist)

perspective in appendix B.

3.1 Introduction

We introduce techniques to perform exact Gaussian process (GP) training and inference on
massive datasets by exploiting a structure that is present in many problems. We consider the
problem of reconstructing spatiotemporal datasets structured on a Cartesian tensor product
grid where there are missing values or “gaps” in the data. Many spatiotemporal measurements

are sampled in this manner, including images and videos, fluid flow data, weather, geology,

32
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medical imaging, etc. and it is important to reconstruct missing or corrupted measurements
before analysis can be conducted. These gaps may be present because of obstructed views,
the presence of water or government boundaries, missing pixels, image artifacts, or otherwise
data corruption, perhaps due to proximity to walls, insufficient sampling frequency or low
signal-to-noise ratios (Gunes et al., 2006; Saini et al., 2016; Wilson et al., 2014).

As mentioned in chapter 2, GP modelling is a powerful non-parametric framework for
performing classification and regression; however, exact GPs are typically restricted to small
datasets since they require O(N?) time and O(N?) storage where N is the number of training
points. This has motivated a considerable amount of work on scalable approzimate GP meth-
ods (discussed in section 2.4.1) that can be applied to large-scale datasets (Lazaro-Gredilla
et al., 2010; Smola and Bartlett, 2001; Snelson and Ghahramani, 2006; Williams and Seeger,
2001; Wilson and Nickisch, 2015) and even though significant progress has been made on
this topic, current methods cannot generally achieve significant gains in scalability without a
noticeable deterioration in accuracy.

Saatci (2011) introduced scalable GP modelling techniques for datasets whose inputs are
distributed on a full Cartesian tensor product grid to leverage efficient Kronecker matrix
algebra (Van Loan, 2000). Training datasets structured in this form arise in many important
applications including the analysis of images, videos, spatiotemporal fields, sensor networks,
or multi-output processes (Alvarez et al., 2012; Osborne et al., 2008). In most of these applica-
tions, there will be gaps in the training dataset which may be caused by missing observations,
presence of obstructions or irregular domain boundaries, or data corruption (Gunes et al.,
2006; Wilson et al., 2014). Unfortunately, the efficient Kronecker matrix algebra used by
Saatgi (2011) can no longer be used in the presence of these gaps.

Wilson et al. (2014) introduce an extension to deal with gaps in structured data using
a penalty method which works well provided a suitable choice is made for a free penalty
parameter. In the present work, we provide alternative formulations that eliminate the
need for a free parameter and we demonstrate significant empirical speed improvements,
particularly on massive datasets.

We will consider datasets with /N training points which form a subset of M points on a full
Cartesian product grid in d dimensional input space. Also, we denote the number of missing
points (or gaps) from the full grid to be L = M — N. Two GP formulations are developed
which enable fast training and inference on a dataset with this partial grid structure. While
we restrict our discussion to GP models, the methods proposed in this chapter can be readily
applied to other kernel methods such as regularization networks (see appendix B). Here we

summarize the main contributions of the chapter:

o The proposed algorithms perform exact GP training and inference in O(dM T LN ) or
O(dM Ea +L) time, and O(dM @) storage; a significant improvement over standard GP
models. We also demonstrate marked improvements in both speed and robustness of the

proposed algorithms in comparison to the “penalty” method introduced by Wilson et al.
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(2014).

e A novel covariance matrix preconditioner is derived which we show significantly ac-
celerates convergence. Direct application of this preconditioner to structured kernel
interpolation (SKI) (Wilson and Nickisch, 2015) is also discussed.

o We take a new approach to GP training where we infer the posterior mean on the gaps
before training is complete. We show that this technique is greatly advantageous for the

considered class of problems.

o For fast predictions, we demonstrate how the posterior mean can be efficiently computed
on a grid and we discuss how to quickly compute the posterior covariance exactly, or

approximately.

o Finally, we show that our methods are highly scalable and accurate; we train exact
GPs on a massive video reconstruction problem and we introduce a powerful approach
to climate analysis in the reconstruction of daily temperatures at 291 Ontario weather
stations over 56 years. We also analyze the proposed methods on a massive particle
image velocimetry (PIV) flow-field reconstruction problem with 19.4 million data points
and demonstrate significant improvements in both speed and accuracy compared to
state-of-the-art techniques on this problem such as gappy proper orthogonal decompo-
sition (GPOD). The largest problem contains over 1 billion points; to the best of our

knowledge exact GP inference has not been attempted before on this scale.

3.2 Notation & Problem Structure

We consider the set of inputs on a full Cartesian product grid X = {x;}4, where x; € R? is
the d-dimensional input vector of the i*" of M points on the full grid. The M corresponding
responses are denoted y = {y;}£, and we assume that some of these responses are missing from
our dataset. Points in X with known responses will be differentiated from points with missing
responses through two index sets: the set X contains the indices of the NV training points with
known responses on the grid, and the set Z contains the indices of the missing training points
on the grid such that X|JZ = {i}}, is the indices of all M points on the full grid. Figure 3.1
provides an illustration of the types of acceptable training point distributions that allow the
techniques of this chapter to be utilized. Figure 3.1a shows training input points distributed
on a two-dimensional Cartesian product grid where no gaps are present. In fig. 3.1b gaps in
the two-dimensional grid (points in the input space where the response is unknown) are shown
as empty circles such that the set Z contains the indices of the points with empty circles and
X contains the indices of all the other points shown. The grid need not be uniformly spaced
along each input dimension and a Cartesian product grid in all dimensions can of course
be extended to cases of three or more dimensions. Another structure that is amenable to

the techniques of this chapter is shown in fig. 3.1c wherein a Cartesian product grid is only
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(c) Grid in subset of dimensions, no gaps. (d) Grid in subset of dimensions, with gaps.

Figure 3.1: Illustration of acceptable training point distributions for the techniques of this chapter.

present in a subset of the input dimensions. In this particular visualization, the inputs are not
structured on a grid in the two dimensions denoted by the drawn planes; however, these points
are observed at the same locations for each value of the third (vertical) dimension. Therefore
a Cartesian product grid is formed between groups of dimensions; in this case between the
third (vertical) dimension and dimensions one and two (on the drawn planes). Once again,
this structure can also contain gaps in the observed responses as visualized in fig. 3.1d. This
structure is commonly seen in spatiotemporal problems and sensor networks. For the purpose
of clarity, we will proceed assuming the training points are distributed on a Cartesian grid in
all dimensions as seen in figs. 3.1a and 3.1b; however, an example problem of the generalized
grid structure can be seen in the climate modelling studies of section 3.5.3.

When we write index sets in the subscript, we refer to a partition, i.e., we can write cce R,

and KeRM*M in partitioned form as

a= [ xx ], and K:[ Kxx Kxz ]
az, Kzx Kzz
We would like to emphasize that the notation used in this chapter is not entirely consistent
from the notation used in the GP overview of section 2.2 as well as the rest of the thesis. The
reason for this inconsistency is that the data considered in this chapter is highly structured
and requires specialized notation for exposition.

We will employ Gaussian processes (GPs) as non-parametric prior distributions over the

latent function that generated the training dataset. It is assumed that the dataset is corrupted
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by independent Gaussian noise with variance o and that the latent function is drawn from
a Gaussian process with zero mean and covariance determined by the kernel k. Using the
notation defined above, the log marginal likelihood of the targets with known response, yx,

can be written as follows (for a detailed introduction to Gaussian processes see section 2.2):

log Pr(yx|0, Xx) = —5log [Kxx + 0’In| — jyx(Kxx + 0Iy)"'yx — § log(27), (3.1)

where Xx is the set of N training point input positions, and Kx x e RY*¥ is the kernel covari-
ance matrix evaluated on the training dataset which is a partition of Ke R *M the covariance
matrix evaluated on the full tensor product grid; [K]; ; = k(x;,x;). The kernel is parameterized
by the hyperparameters, @, which we estimate by maximizing the marginal likelihood.

After training, the response y, at an arbitrary point x, € R? can be inferred by evaluating

the posterior distribution

Pr(y.|0,Xx,x.) ~ N(y*

gx (Kxx+0%In) "yx, k(xx:) — g% (Kxx + 021N>_1gx> , (3.2)

where v, €R is the test prediction and ge RM is the cross-covariance vector between all points
on the full training grid and the test point, [g]; = k(x;,Xx).

We focus on the three computationally demanding calculations required for GP training and
inference; i)solving the linear system ax = (Kx x +0*Iy) 'y to compute the log marginal like-
lihood and posterior mean; i) solving the linear system (Kx x +0%Ix) gy for each test point
to compute the posterior covariance; and i) computing log|Kx x + 021 y| for the log likelihood.

We will consider a covariance kernel that obeys the product correlation rule (as many
popular multidimensional kernels do), i.e., k(x;,x;) = sz=1 ki(xy,z5), in which case the
covariance between points on a full tensor product grid inherits a Kronecker product form;
K = @ld:l K;, where K € R¥*M g the kernel covariance matrix between all points on the
Cartesian product grid containing M = Hld:1 m; points, K; € R™>*™ is a one-dimensional

lth

kernel covariance matrix along a slice of the [*" input dimension, and m, is the number of points

[*™ input dimension on the Cartesian product grid (Saatci, 2011). Additionally, ®

along the
denotes the Kronecker product whose algebraic properties are summarized in appendix A.
Exploiting this Kronecker product structure, we find that only O(dN 3) storage is required,
and a matrix-vector product with K requires only O(dN %) time'. However, when there
are missing responses from the full grid, the Kronecker product structure is broken and
Kx x € RV*N becomes a large dense matrix with no structure. As a result, GP modelling
storage and time increase to the nominal complexities of O(N?) and O(N?), respectively. We

next discuss some novel approaches for addressing this computational challenge.

L For ease of exposition, we assume m1 =mg=--=mg= M points along each dimension of the Cartesian product grid when
denoting asymptotic complexities. Additionally, we refer to (Saatgi, 2011, algorithm 15) for an efficient matrix-vector product
algorithm.
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3.3 Linear Algebra aspects of GP Training

Here we propose new algorithms to compute a matrix-vector product with the covariance
matrix inverse, (Kx x + 0?Iy)™!, which is the most computationally demanding component
of performing exact GP regression. We first review the existing “penalize-gaps” (PG)
formulation of Wilson et al. (2014) which requires solving an unstructured linear system of
equations of size M x M (number of points on full grid). We then proceed to develop two
alternative formulations; the “ignore-gaps” (IG) method which reduces the size to N x N
(number of training points); and the “fill-gaps” (FG) method which only requires solving
an unstructured linear system of size L x L (number of gaps). We complete this section by

developing a preconditioner for the two new formulations presented.

3.3.1 Gap Penalization Strategy

Wilson et al. (2014) first approached this problem when using GPs to model observations on
a spatiotemporal Cartesian product grid. The central idea of their solution was to fill in the
gaps in the observations with arbitrary values and subsequently use a penalty approach to
ensure that these pseudo-observations do not influence the final model. This may appear to
be somewhat counterintuitive since they are essentially increasing the number of observations;
however, this step allows fast matrix-vector products to be made with the M x M covariance

matrix K which has a Kronecker product structure.

Proposition 3.1 (Penalize-Gaps, PG). The vector a € R™ obtained from the numerical

solution of the penalized M x M system of equations
(K+7R+0°Ly)a=y (3.3)

satisfies (Kx x+0?Iy)ax =y y in the limit of the penalty parameter -y — oo, where Ke RM>*M

RMXM

is the kernel covariance matrix on the full product grid, Re is an all zero matrix except

Rx x=1y, and arbitrary numerical values are inserted in the missing entries of yeRM.

A proof is provided in the supplementary material of (Wilson et al., 2014). A linear conju-
gate gradient (CG) solver (Atkinson, 2008) can be used to solve eq. (3.3) to take advantage of
fast matrix-vector products in O(dM TN ) since K = @leKi has a Kronecker product form.
The preconditioner (YR + 0?1 M)_% was suggested for this formulation (Wilson et al., 2014).

Unfortunately, this method can suffer from numerical inaccuracies with a poor choice
of 7. For instance, if v is too small, the desired system will be inaccurately approximated.
Conversely, a 7 chosen to be too large will result in an ill-conditioned system of equations.
It is therefore not clear how large the penalty parameter v should be a priori. Two novel

approaches that do not suffer from this limitation are presented next.
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3.3.2 Selection Matrix Strategy

Using sparse selection matrices, we develop a technique to exploit Kronecker matrix algebra

without the use of a penalty.

Proposition 3.2 (Ignore-Gaps, IG). The solution of the linear algebraic system of equations

(Kx x+0%Iy)ax=yy also satisfies the system of equations
W (K+0’Ly )W ax=yyx, (3.4)

where W e RN M s q sparse selection matriz with one value per row set to unity in the column
corresponding to each index in X such that WKW7T = Kx x.

It is straightforward to see that this result holds since application of the selection matrices
immediately recovers the target system of equations. This formulation also lends itself well
to a conjugate gradient solver since it admits fast matrix-vector products in O(dM TN )
due to the form of K = ®?:1Ki- Most importantly, the proposed method does not require
any user-defined parameters unlike the previous penalize-gaps method.

We observe that this covariance matrix structure coincides with that of “structured kernel
interpolation” (SKI) (Wilson and Nickisch, 2015) in the special case where training data
coincides with the inducing point grid and so the SKI interpolation matrix becomes the sparse
selection matrix W. We emphasize that while SKI typically uses an approximate kernel, if
the inducing point grid and training data coincide, then the exact kernel is recovered during
training. At prediction time, the methods differ since the SKI kernel evaluated between train

and test points becomes approximate whereas we continue to use the exact kernel.

3.3.3 Fill Gaps Strategy

While the previous two approaches determine ax directly, this approach first infers the
posterior mean on the gaps, y,, thus recovering a non-gappy problem upon which we can fully

exploit Kronecker matrix algebra.

Proposition 3.3 (Fill-Gaps, FG). The solution of (K + oIy )a = y satisfies

(Kx x+02Iy)ax=Yyy where the missing values, y 5, are determined by
VQ(T+0°Ly) Q' VTy,=—VQ(T+0%L) Q" W'y, (3.5)

where V e REM s o sparse selection matriz that has one value per row set to unity in the

RMXM

column corresponding to each index in Z, and Q, T e are unitary and diagonal matrices,

respectively, formed from the eigendecomposition of K=QTQT.

Proof. First, considering the special case 02 = 0, observe that we can use ax = Ki}xyx and
az =0 to infer the posterior mean of the missing values on the gaps, y,, by y = Ka. Here we

attempt to solve for y, directly without first computing arx. We start by writing . = K™y
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in partitioned form, and impose az =0

[K'xx [K'lxz || ¥x _| ax
[K'lzx [K'zz Yz 0 |
where [K'l](.,.) is a partition of K. Rearranging the last row gives

[K'22y7 = —[K!']2xyx, and observing that VK 'V’ = [K]; 7 and VK 'W7” = [K!]; x

gives the system of equations
VK 'Vly, = VK 'WTy,. (3.6)

Next, if we consider 02>0, then we require a partition of (K +¢2I;;)~! instead of K™'. We
can write this as (K+02I,) "t = Q(T—HJQIM)_lQT using the eigendecomposition K = QT Q"
defined in the proposition statement which only requires O(dM %) time to compute using
Kronecker matrix algebra. Substituting this for K™ in eq. (3.6) completes the proof. [

Like the other methods (IG and PG), this formulation lends itself well to a conjugate
gradient solver since it admits fast matrix-vector products in O(dM T4 L) due to the
structure of K= @f;lKi. The eigendecomposition of K =QTQ” can be rapidly computed in
O(dM %) time using Kronecker matrix algebra, and as a result, Q = ®?:1Qi is also a Kronecker
product matrix (Van Loan, 2000). Lastly, since T+, is diagonal, matrix-vector products
with its inverse cost only O(M ) time. We would like to emphasize that the time complexity of
matrix-vector products are independent of the number of training points, N. Additionally, we
observe that since the system being solved by a CG method is L x L, the number of iterations
required is expected to be much less than L, the number of gaps. We therefore expect that
this method would be extremely fast for massive datasets where there are few gaps but in
section 3.5 we find that it also outperforms other methods well outside of this regime. Once
the missing values y, are inferred, arx can be found by evaluating o = Q (T + 021 M)leTy,

which requires only O(dM %) time.

3.3.4 Preconditioning strategies

Using the ignore-gaps technique outlined in section 3.3.2, and the eigendecomposition of
K =QTQ7, observe that we can write the kernel covariance matrix as Kxx= WQTQ'WT.
We can also approximate Kx x using the p largest eigenvalues and corresponding eigenvectors
of K as

Kxx ~Kxx=WQSs!(s,TS!)S,Q" W' =wQs!T,S,Q"W”,

h

where S, € RP*M is a sparse selection matrix whose i row has one value set to unity in the

column corresponding to the index of the i** largest eigenvalue of K on the diagonal of T; and
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T,eRP*P is a subset of T. We can then use the matrix inversion lemma to invert Iwix,x +02Iy
~ 1 _
(Kxx+0'Ly) ™ = — | Ly=WQS] (¢’ +T,8,Q" W'WQs]) "'T,8,Q"W'|. (3.7

which only requires the additional storage and inversion of a matrix of size p x p. After the pxp
matrix has been factorized, multiplications with this preconditioner cost only O(dM gt p?)
time.

The use of IN(X,X for matrix preconditioning was explored with notable empirical success
by Cutajar et al. (2016) where a sub-set of training data was used as “inducing points” giving
M < N, as opposed to a super-set as it is here (M > N') which we expect improves performance.

In section 3.3.2, we observed the duality between the ignore-gaps technique and SKI
(Wilson and Nickisch, 2015). We would further like to point out that the preconditioner
eq. (3.7) can similarly be used in the SKI framework, but we will not study its effectiveness in
a general SKI setting.

Considering now a preconditioner for the fill-gaps method of section 3.3.3, it can be shown

that the matrix on the left-hand side of eq. (3.5) can be rewritten as
VQ(T+0"Ly) ' Q"V =J+(L=VQ[(T+0’Ly) ' ~(Lu]Q V" +(L

where we have applied a spectral shift of ( € R to the first term, which we call J e RF*L. We

can now write a rank-p approximation of J as
J~J-vQs! (SP [(T+02T,) " —CT] éf) S,Q"V'=VvQS' T,5,Q" V7,

where T, € RP*? is a subset of [(T+02I))"'—(I)] containing the largest values on its

b row has one non-zero value set

diagonal, and gp e RP*M ig a sparse selection matrix whose 7'
to unity in the column corresponding to the index of the i*! smallest eigenvalue of K on the
diagonal of T. To ensure no singularities, we choose 0 <{ < (\,+0?)~" where \,€R is the p"
smallest eigenvalue of K (in practice we choose a value mid-range). The term J+ (I is then
an approximation of the fill-gaps left-hand side matrix which we can cheaply invert to use as

a preconditioner with the matrix inversion lemma
(Frcr)t=c? [IL—VQég(ng+Tp§pQTVTVQ§§)‘1Tp§pQTVT]. (3.8)

The preceding matrix similarly admits fast matrix vector products in O(dM “@ + p?) time.

We will analyze the efficacy of both of these preconditioners in section 3.5.2.

3.4 Model Selection & Fast Inferencing

This section aims to cohesively organize the developments outlined previously into a practical

algorithm that can be used for training and inferencing. To compute the log marginal
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likelihood in eq. (3.1), we need (Kxx + 0*Iy) 'yx, and log [Kxx + 0?Iy|. We already
discussed efficient ways to compute the former and we will use a Nystréom approximation for
the latter, which is accurate for large N (Wilson et al., 2014);

N
log|Kx x +0°In|~ Zlog(%/\ﬁ—J?) ,
i=1

where ); is the i'" largest eigenvalue of K = ®j:1Kj which can be rapidly computed in
O(dM @) time due to its Kronecker product form (Van Loan, 2000). With some modification,
other log determinant estimators that require only matrix vector multiplications could also
be considered (see Dong et al. (2017) for a discussion of such techniques). We now have all
the ingredients required to efficiently train our model; we can now compute and maximize
the marginal likelihood with respect to the hyperparameters and compute ax. We shall next
outline how to rapidly compute the posterior mean and covariance during inference.

We frequently need to infer test points distributed on a tensor product grid (e.g., for
search or visualization). Here we demonstrate how we can exploit Kronecker matrix algebra
to evaluate the posterior mean of points on a grid extremely quickly. From eq. (3.2), the
posterior mean for a single point is given by gfax which is equivalent to g’e, where
ax = (Kxx + 0?In)'yx and az = 0. If it is sought to perform inference at many points
then we can replace g with G € RM*@ which is formed by horizontally stacking the column
vectors g for each of () distinct test points. Further, if we take these test points to be on a
Cartesian product grid then a Kronecker product structure is inherited, G = @le(}i, where
G, e R™*4 and we take Q = ¢¢, M = m®. By recognizing and exploiting this structure, the
time required to compute the posterior mean at the @) test points decreases from O(NQ) to
O(WQM + /M (). This can give significant computational advantages for large Q.

The posterior covariance computation poses a different problem, since, from eq. (3.2) it
is evident that it requires the solution of an N x N system of equations for each test point,
(Kx x+0%Iy)'gx. We could compute this using any technique developed in section 3.3 since
extension of the penalize-gaps and ignore-gaps techniques for this problem is trivial. However,
applying the fill-gaps formulation gives an interesting interpretation: what we are “filling in”
here is g, which is the cross-covariance between gaps on the training grid and the test point such
that the final solution is not influenced by the gaps. Once gy is filled in, the fully structured
problem can be solved rapidly to complete the posterior covariance computation. Since this
problem is effectively identical to the training problem, we refer to section 3.5 for a comparison
of the different computation methods; however, it must be considered that any time invested
in formulating a preconditioner once can be used to perform inference at many test points.

We may alternatively consider an approximation of the posterior covariance where we
make use of the matrix preconditioner developed in section 3.3.4 by replacing Kx x with I~{X7X
in eq. (3.2). This gives us a similar posterior distribution as the Nystrém method for GP

modelling studied by Williams and Seeger (2001) and would enable the posterior covariance to
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be computed in O(dM T+ p?) time per test point. We will not consider this approximation

in the experiments of section 3.5 but will instead restrict our attention to exact GP inference.

3.5 Experiments

A python implementation of the methods discussed in this chapter along with several tutorials

can be found at https://github.com/treforevans/gp_grid.

3.5.1 Stress Tests
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Figure 3.2: Reconstruction timings comparing the techniques outlined in section 3.3 across a range of gappiness on various problem
sizes, M. The three techniques are FG - fill-gaps with no preconditioner (section 3.3.3), IG - ignore-gaps with no preconditioner
(section 3.3.2), IG_ precon - ignore-gaps with a rank-5000 preconditioner (section 3.3.4) and PG - penalize-gaps with the precon-
ditioner discussed in section 3.3.1. The timings include both the time to fill in the missing values, as well as compute K~y = c.

We test the robustness of techniques outlined in section 3.3 for training a GP regression
model on massive datasets of varying “gappiness”’= (M — N)/M = L/M. Results are shown
in fig. 3.2 for gappiness sweeps across various grid sizes, M. For the M = 10,000 case, data
was generated from the two-dimensional Rastrigin function (Miihlenbein et al., 1991) and for

the larger studies, we reconstruct a gappy 4K video of a resonating elastic membrane defined

. . . 2 2 2 . .
by the two-dimensional wave equation, 27%/ + S—Ig = ‘;?z, where x1,22€R are spatial coordinates,

and x3 € R is time. The membrane is constrained along the edges of the video frame and
begins with random initial conditions. Our GP models use the squared-exponential kernel,
ki(x,z) = exp(—||x—2||3/0?), and in this study hyperparameters are estimated beforehand on
the fully structured dataset. We do not consider hyperparameter estimation using the gappy
data in this experiment since the computation of a alone allows us to contrast differences
between the considered techniques. Gaps are randomly applied to mask the training data
and « is computed using a CG solver to a tolerance of 107%. All experiments are run on a
machine with two E5-2680 v3 processors and 128Gb RAM and we only report timings since
the formulations are all mathematically identical so differences between the solutions found

by each approach are negligible.
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CHAPTER 3. SCALING EXACT GAUSSIAN PROCESSES ON MULTI-DIMENSIONAL GRIDS 43

10 : : - : : 40 : - : : : 12 : :
— 4=005 — 4=0.05 — 4=005
08 — 4=0.10|| ¥ s=0.10 10
— §=020 20l — =020

0.8

0.6 a5

06

04l 20

Relative Time
Relative Time
Relative Time

15} 04+

0.2

1a 0z

2oL\ sl |§(-
0.0 e e— L L L
o 500 IOUD- 1500 2000 2500 3000 0 500 1000. 1500 2000 2500 3000 0 S00 1000 1500 2000 2500 3000
Eigenvalues Eigenvalues Eigenvalues
(a) Ignore-Gaps CG Time (b) Fill-Gaps CG Time (c) Ignore-Gaps Setup & CG Time.

Figure 3.3: Results of a preconditioner efficacy study. We use a linear conjugate gradient solver to find aex using the preconditioner
eq. (3.7) with varying values of the number of eigenvalues included, p, and kernel lengthscales, 6,. The timings in fig. 3.3a and
fig. 3.3b only include the time required to solve the linear system using a CG solver while in fig. 3.3c the time required to construct the
preconditioner is also included. All timings are presented relative to the time to perform the reconstruction with no preconditioner.

From fig. 3.2a we can see that the non-preconditioned ignore-gaps (IG) and the precondi-
tioned penalize-gaps (PG) algorithms performed comparably, but the fill-gaps (FG) method
significantly outperformed the others across much of the gappiness spectrum.

In the larger video reconstruction problem in fig. 3.2b, IG and PG are not shown, since
after a wall-clock time of 5 days, only the N =1 case had converged. However, the FG method
and the ignore-gaps algorithm with a rank-5000 preconditioner (IG_precon) completed
reconstructions across the full gappiness spectrum with each run taking <1 hour. We empha-
size that although p = 5000 is four orders of magnitude smaller than M, the preconditioner
dramatically accelerated convergence.

Moving to the 1-billion-point video reconstruction problem in fig. 3.2c, the IG_ precon
method was omitted since the time required to form the preconditioner became prohibitive;
however, the FG routine completed all reconstructions up to 70% gappiness in under 1 hour.

In figures 3.2a & 3.2b, we observe that the fill-gaps technique is fastest where the gappiness
is low, but the ignore-gaps technique is only faster when the gappiness is surprisingly close to

one; in section 3.5.2 we provide insight into why the FG method converges so quickly.

3.5.2 Preconditioner Studies

Here we assess the efficacy of the preconditioners outlined in section 3.3.4 for both the ignore-
gaps and fill-gaps methods. For these tests, we take the training data to be structured on a
two-dimensional grid with 100 points evenly spaced in the range [0,1] along each dimension,
giving M =10,000. We then randomly remove 50% of the training points and sample responses
as y ~N(0,I);). For our GP model, we set 0% =1075, and use a squared-exponential kernel,
considering a range of kernel lengthscales, 6, We then compute ax = (Kxx + ¢*Iy) lyx
using various values of preconditioner rank, p, and average over several samples of y and

randomly applied gaps. Results are shown in fig. 3.3.
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Firstly, observe that the ignore-gaps scheme benefits dramatically through the use of a
preconditioner (eq. (3.7)), which is consistent with the results of the stress tests. Figure 3.3a
shows the ax computation time excluding the preconditioner setup time where it is evident
that massive computational savings can be realized. This is representative of posterior
covariance computations since we can reuse the preconditioner for many test points after an
initial setup (discussed in section 3.4). The timings in fig. 3.3¢ include setup time which is
representative of using the preconditioner for training. Here a broad minimum is evident,
indicating that an acceptable value of p can be easily chosen. We also see that as 6, decreases,
a greater number of eigenvalues, p, are required to achieve equivalent savings, as expected.

In fig. 3.3b we analyze the fill-gaps preconditioner (eq. (3.8)) where it appears to only be
effective for a very particular value of p, even when we exclude the preconditioner setup time.
If the setup time is included, we find that the method converges fastest with no preconditioner.
We expect this is because the eigenvalues of (K+02I5;)~! tend to decay slowly from the largest
possible value of 072 and so the reduced-rank approximation used in the preconditioner is
inaccurate. We would also expect this eigenspectrum to make the non-preconditioned fill-gaps
method particularly well suited to a CG solver, which is consistent with the fast convergence

observed in the stress tests of section 3.5.1.

3.5.3 Ontario Weather Stations

Max Temp (C)

Min Temp (C)

Day of Year, 1992

Figure 3.4: Reconstructed daily temperature observations for Moosonee in 1992. The black curves show the actual daily maximum
(top) and minimum temperatures (bottom) which were both withheld from the model to compute the blue posterior distribution
where the mean and three standard deviations (99.7% confidence) are illustrated.

Here we demonstrate an efficient and powerful analysis of weather patterns at 291 weather
stations across Ontario every day from 1950 to 2005. The dataset (Natural Resources and
Forestry, 2008) contains many missing observations, mostly due to corrupted recordings or

because some weather stations were not in operation for the entire period. Reconstructing
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these observations are important for environmental studies and typically this is done by in-
terpolating responses spatially for each day, independent of all other days, and all other re-
sponses (Hutchinson et al., 2009; Natural Resources and Forestry, 2008). These dependencies
are ignored because the problem size becomes prohibitive when temporal or multi-output
correlations are considered. We identify structure in this problem, allowing us to consider cor-
relations within space, time, and between responses to allow forecasting into the future with an
accurate posterior distribution. This ability to forecast is not possible with existing techniques.

We use a kernel for our multi-output GP which admits the following non-gappy covariance

matrix;
K = Kyear ® Kday ® Kspace ® B7

where Kyeor € R"*°° is the covariance between the integer year of observations
(e {1950, ...,2005}), Kqay € R36x3%6 i the covariance between the day of year of observa-
tions (€ {1,...,366}), Kqpace € R?1*?1 is the covariance between the location of the weather
stations (€ R?, {latitude, longitude, elevation}), and B € R?*2 is the covariance between the
daily maximum and minimum temperature, which are the two observations we are modelling
each day (see (Alvarez et al., 2012) for multi-output kernel details). We also apply a periodic
transformation to the day-of-year kernel with a period of 365.25 days (Roberts et al., 2013).
Although the weather stations themselves are not distributed on a grid, we have evidently
identified significant structure to exploit.

The full grid size is M = 11,928,672, however, over 6.5 million points are missing and 30%
of the remaining points are randomly withheld for testing, giving N = 3,742,547 training
points; an enormous problem for exact GP modelling.

Table 3.1 illustrates the results of the exact GP model constructed on the climate dataset
using the different techniques outlined. Model training includes hyperparameter estimation
through marginal likelihood maximization and the root mean squared error (RMSE) evaluated
on the randomly withheld test set is reported for daily minimum and maximum temperature
predictions from the multi-output GP. The test error is quite low and is almost constant down
the columns as we would expect since the different training methods should ideally result in
identical models. It is firstly evident that the penalize-gaps technique (PG) is the slowest
method considered, even for a small penalty parameter (7 = 100). The non-preconditioned
ignore-gaps (IG) technique trained about 22% faster; however, we see that the training time
can be further reduced by nearly an order of magnitude using a preconditioner with only
p = 3000. The fill-gaps (FG) technique continues to be our most robust method, nearly
halving the training time of any other.

Figure 3.4 compares the posterior distribution to the observed data at the Moosonee
weather station in 1992. Moosonee was chosen since it is the farthest from its nearest neigh-
bour, the Smoky Falls weather station which is 171km inland (see fig. 3.6 for a map). The GP

does a good reconstruction of the withheld observations, especially considering the evident
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Run Time RMSE (°C)
(hrs) Minimum Maximum
FG 11.5 2.018 1.453
1G 173.1 2.018 1.454
1Gio00 37.3 2.018 1.453
IGao00 19.7 2.018 1.453
PGioo 2215 2.017 1.452

Table 3.1: Reconstruction time and accuracy of daily maximum and minimum temperatures on the withheld test set using
different training techniques for the multi-output GP. PG4 means the penalty v = # was used and 1G4 means a rank p = #
preconditioner was used.
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Figure 3.5: Forecast of Toronto maximum daily temperature. Actual observations are in black and the posterior mean is in blue.
Note that the x-axis is on a log scale.

non-stationary behaviour. However, the model appears to struggle to predict the minimum
temperature accurately during the summer months. This is perhaps the result of a localized
climate effect caused by Moosonee’s close proximity to a large body of water (James bay). In
the shaded region, the posterior distribution is also shown with respect to each output.

Figure 3.5 shows a multiple year forecast at the Toronto weather station where it is
evident that the posterior mean is quite reasonable. For training, all data after July 1, 2004
was withheld along with all data at the Toronto weather station back to 1950. In this way
the forecast makes full use of the spatiotemporal correlations, demonstrating the ability to
forecast at a location where there is no historical data.

Figure 3.6 shows the log posterior variance of daily temperatures across Ontario. Also
shown is the scattered distribution of weather stations across the province. As expected, the
posterior variance rises away from the weather stations where the lack of data is reflected in
our uncertainty.

Figure 3.7 shows the learned temporal kernel for the Ontario climate studies, found by
maximization of the marginal likelihood (i.e., type-1I inference). This stationary and decaying
periodic kernel has a spike in correlation once every year indicating that the temperature on
a given day is correlated to the same day of year the following years. On a daily scale, it is
evident that the kernel amplitude decays very rapidly suggesting that daily temperature is
only correlated a couple days into the future and past. On a yearly scale, it is evident that
the kernel amplitude decays noticeably the first year and then essentially remains constant.
This means that the temperature on a given day in 1950 is correlated to the same day of year
55 years later in 2005. This is consistent with our understanding of an annual climate.

Note that the kernel in fig. 3.7 is very different from the learned temporal kernel presented
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Figure 3.6: Log posterior variance of daily temperatures across Ontario. Black dots indicate weather station locations. Moosonee

is indicated along with the distance and elevation change between its nearest neighbour, the Smoky Falls weather station.
Temperature units are in degrees Celsius (°C).
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Figure 3.7: Learned temporal kernel for the Ontario climate study. This stationary and decaying periodic kernel has a spike in
correlation once every year.

by Wilson et al. (2014) for a climate model constructed using pre-interpolated weather data on
a Cartesian grid. While we initialized our temporal kernel to be similar to the kernel found by
Wilson et al. (2014), it fit the data poorly and the marginal likelihood maximization procedure
rapidly moved towards a different structure. The kernel in fig. 3.7 is also more consistent with
our prior understanding of the climate. Perhaps the kernel presented by Wilson et al. (2014)

was stuck in a local optimum of their marginal likelihood maximization procedure.

3.5.4 Particle Image Velocimetry Flow Reconstruction

In the analysis of fluid flows, particle image velocimetry (PIV) is a popular means of observing
spatiotemporal fluid velocities where measurements can be resolved on a high-resolution spa-
tial grid with a multi-kHz temporal repetition rate, giving datasets that can exceed hundreds
of millions of observations from a single experiment. Datasets of this size require massively
scalable techniques to enable accurate reconstructions. Further, PIV is the de facto standard
two-dimensional flow-field measurement technique used for gas turbine combustors (GTCs)

where it has become an important tool in design and analysis (e.g., (Arndt et al., 2015; Boxx
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Method Run Time RMSE
u v w

GP-FG 7.04 hrs 1.8264 2.2015 3.4697
GP-IG 7.94 hrs 1.8264 2.2015 3.4697
GP-PG-10? 8.00 hrs 1.8371 2.2119 3.4778
GP-PG-103 8.17 hrs 1.8274 2.2025 3.4704
GP-PG-10* 8.38 hrs 1.8265 2.2016 3.4698
GP-PG-10° 8.63 hrs 1.8264 2.2015 3.4697
GP-Local 47.17 hrs 1.9704 2.4879 3.7777

GPOD (Saini et al., 2016)  ~40 hrs 2.1306 2.4071 3.8189

Table 3.2: Comparison of reconstruction time and accuracy on the PIV dataset with missing observations for different model
types. The time listed is the total time to sequentially reconstruct all three velocity components (u, v, w). The number listed
after the penalize-gaps methods (i.e., GP-PG-#) indicates the value of the penalty parameter used. Top performance is identified
in boldface. Note that the GPOD studies were run on different hardware than the other methods and so the timing results should
be interpreted carefully.

et al., 2015; Caux-Brisebois et al., 2014; Cosié¢ et al., 2015; Fureby et al., 2007; Stopper et al.,
2013; Temme et al., 2014)). However, gaps are abundant in PIV flow observations for GTC
applications due to complex experimental setups, high-pressure flows, and a wide variety of gas
densities which makes uniform particle seeding difficult while high-pressure liquid-fuelled com-
bustion generates high background luminosity from flame chemiluminescence and soot (Saini
et al., 2016). In this area, reconstruction of missing data is essential for the measurements
to be utilized in data assimilation strategies, modal decompositions or other data-mining
techniques that require continuous data in space or time (Gunes et al., 2006; Saini et al., 2016).

Gappy proper orthogonal decomposition (GPOD) is a popular technique used to approach
PIV reconstruction problems (Everson and Sirovich, 1995; Raben et al., 2012). It is an
efficient extension of proper orthogonal decomposition (POD) that provides high accuracy ap-
proximations for missing or erroneous data in measurements. POD is a data analysis method
that provides a low dimensional approximation to high-dimensional processes in the form of
a linear combination of basis functions. The POD basis functions, also called eigenmodes, are
calculated from the data directly. The method extracts the most explanatory modes from the
dataset and uses these for reconstruction under the assumption that the more energetic modes
contain the majority of noise and are therefore excluded (Liang et al., 2002). The core of all
GPOD techniques consists of an iterative implementation of POD where instantaneous gaps
in the data set are filled-in. This prevents the POD from attempting to produce zeros (gaps)
at the locations and times of missing data. After each POD calculation, the guess for the data
in the gaps is updated based on a POD approximation using a particular number of modes.
Interested readers should refer to (Saini et al., 2016) for a detailed discussion of GPOD.

We will compare the performance of GPOD to the developed Gaussian process algorithms
on a large-scale PIV reconstruction problem. We consider a high vector yield particle image
velocimetry (PIV) dataset taken from turbulent swirl flames in an atmospheric pressure gas
turbine model combustor. This dataset was previously described by Caux-Brisebois et al.
(2014), Saini et al. (2016), and Steinberg et al. (2013). To summarize, 10 kHz stereoscopic PIV

vector fields were computed with a spatial vector spacing of approximately 0.5mm to give a



CHAPTER 3. SCALING EXACT GAUSSIAN PROCESSES ON MULTI-DIMENSIONAL GRIDS 49

1.0

T R

(RS S

N

Ykl et aaas s ) A
N e e

AN

N\

7

IS

(a) Full flow-field.

\
A

N

ZIEINMN

TN

N

S DR

(c) GPOD Eayg =0.1736 (d) GP-FG Eayg =0.1298 (e) GP-Local Eayg =0.1340

Figure 3.8: Instantaneous u,v flow velocities from a PIV temporal snapshot. Shown is the original flow field along with the
artificially applied gaps and reconstructions of the gaps for various methods. Also shown in colour is the relative velocity vector
error magnitude E(%,0) = /(T —u)2+ (¥—v)2/vu2 +v2, where values with and without a tilde, *, indicate the reconstructed and
target velocity vectors, respectively, and Fayg gives the average value of E across all gaps in the figure.

dataset of flow velocity vectors (with velocity components u,v,w along three orthogonal spatial
coordinates) on a Cartesian product grid of size m, =44, m, =56, and m; = 7870. The number
of observations on the full grid is thus M = 44 x 56 x 7870 = 19,391,680. An instantaneous
snapshot of the u,v flow vector field is shown in fig. 3.8a. The velocity component w is the
velocity out-of-plane and is not shown in the image.

To compare various reconstruction techniques, we create artificial gaps in the dataset as
shown in fig. 3.8b, train on the remaining observations and test the quality of the reconstruc-
tion on the held-out observations. We use the same gaps as Saini et al. (2016). Table 3.2
demonstrates the performance of the various model types discussed in the reconstruction of
the PIV dataset for the three velocity components (u,v,w). We compare various strategies to
the gappy proper orthogonal decomposition (GPOD) reconstructions obtained by Saini et al.
(2016) where computations were performed on a machine with an Intel(R) Core(TM) 15-2400
CPU and 16 GB of RAM.
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All Gaussian process (GP) methods use the ARD exponentiated quadratic kernel shown
in eq. (2.28). In addition to the GPOD method and the Gaussian process methods outlined
in this chapter, we also compare to a method we call GP-Local which treats each temporal
snapshot independently. This modelling choice is equivalent to choosing a prior covariance
kernel k£ that gives zero correlation between two independent points in time and is commonly
referred to as “local Kriging interpolation” in flow-reconstruction literature (Gunes et al.,
2006). GP-local is implemented using the open-source GPy library (GPy, since 2012).

The penalize-gaps (GP-PG) method of section 3.3.1, and the developed ignore-gaps (GP-
IG) method of section 3.3.2 and fill-gaps (GP-FG) method of section 3.3.3 were all implemented
in python using the authors’ code. All GP computations were performed using sequential
code (linked to a multi-threaded BLAS library) on a machine with two E5-2680 v3 processors
and 128GB RAM. All GP training times include the time for hyperparameter estimation (with
hyperparameters 6 = {(,.¢,,(;,0°}) by maximization of the log-marginal likelihood as discussed
in section 3.4.

It can be seen from the results obtained that the fill-gaps method (FG) was both the fastest
and most accurate method considered. Not surprisingly, the ignore-gaps (IG) method achieves
the same accuracy since it is constructing an identical model; however, the penalize-gaps
method (PG) requires a high penalty parameter value to achieve this which affects condition-
ing and increases its reconstruction time. The timing of GPOD, while listed as significantly
slower than the other methods, should be carefully interpreted since the experiments were
performed on different hardware.

We can see that the reconstruction accuracy for v and v are similar, but the error in w
is higher. This was similarly observed by Saini et al. (2016); they attributed this as a result
of higher noise in the out-of-plane w measurements that is inherent to stereoscopic PIV
techniques.

Figure 3.8 plots the reconstructed flow-field at an instantaneous time snapshot, comparing
the reconstructions of GPOD, GP-Local, and GP-FG. This allows visualization of the error
distributions between the methods. Both GP methods evidently out-perform the GPOD
reconstruction, with the GP-FG construction improving slightly upon GP-local. Note that
GP-IG and GP-PG with an infinite penalty parameter would all give identical reconstructions
to GP-FG.

3.6 Concluding Remarks

In this chapter, we propose two novel and scalable exact GP regression algorithms for massive
datasets on a partial grid. Both our algorithms make extensive use of Kronecker matrix
algebra and we present novel preconditioners to accelerate computations. The proposed
algorithms have modest memory requirements which enable us to showcase performance on a

real-world climate modelling problem with over 3.7 million training points and on a synthetic
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video dataset problem with over 1 billion training points. To the best of our knowledge, exact
GP inference has not been attempted before on this scale.

Compared to the penalize-gaps strategy of Wilson et al. (2014), both developed formulations
eliminate the need for any user defined parameters and both of them ultimately decrease the size
of the problem to be solved through the use of sparse selection matrices, rather than a penalty
approach. The fill-gaps technique from proposition 3.3 demonstrates a particularly interesting
formulation wherein the gaps are “filled-in” before explicitly training the model. Additionally,
both of the two developed techniques, fill-gaps and ignore-gaps, complement each other where
the first is solving a problem whose size is equal to the number of gaps while the latter is solv-
ing a problem size equal to the number of training points. Thus, an appropriate method can
always be selected based upon where the dataset lies in the “gappiness” spectrum. Further,
we developed a Nystrom-like preconditioner which is effective at accelerating computations.

Lastly, while the methods discussed assume some structure in the training data, we demon-
strate through the climate modelling problem that with some additional insight, structure

can be found in many applications to enable exact GP modelling on massive datasets.



Chapter 4

Scaling (Gaussian Processes

with the Nystrom Approximation

In this chapter, we consider a novel Gaussian process approximation strategy and unlike
the methods of chapter 3, this approach does not require any particular problem structure.
Specifically, we introduce a novel kernel approximation strategy that consists of p eigen-
functions found using a Nystrom approximation from a dense Cartesian product grid of
inducing points. By exploiting algebraic properties of Kronecker and Khatri-Rao tensor
products, computational complexity of the training procedure can be practically independent
of the number of inducing points. This allows us to use arbitrarily many inducing points to
achieve a globally accurate kernel approximation, even in high-dimensional problems. We
benchmark our algorithms on real-world problems with up to two-million training points and

103% inducing points. The following paper was published from the contents of this chapter:

T. W. Evans and P. B. Nair (2018c). “Scalable Gaussian Processes with Grid-
Structured Eigenfunctions (GP-GRIEF)”. in: International Conference on Machine
Learning, pp. 1416-1425, long talk.

4.1 Introduction

As discussed in chapter 2, GP modelling is restricted to modestly sized datasets since training
and inference require O(n®) time and O(n?) storage, where n is the number of training
points (Rasmussen and Williams, 2006). This has motivated the development of approximate
GP methods that use a set of m («n) inducing points to reduce time and memory requirements
to O(m*n + m?) and O(mn), respectively (Peng and Qi, 2015; Smola and Bartlett, 2001;
Snelson and Ghahramani, 2006; Titsias, 2009). However, such techniques perform poorly if
too few inducing points are used, and computational savings are lost on complex datasets
that require m to be large.

Wilson and Nickisch (2015) exploited the structure of inducing points placed on a Cartesian

product grid, allowing for m > n while dramatically reducing computational demands over

52
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an exact GP. This inducing point structure enables significant performance gains in low
dimensions, however, time and storage complexities scale exponentially with the dataset
dimensionality, rendering the technique intractable for general learning problems unless a
dimensionality reduction procedure is applied. In the present work, a Cartesian product grid
of inducing points is also considered; however, we show that these computational bottlenecks
can be eliminated by identifying and exploiting further structure of the resulting matrices. The
proposed approach leads to a highly scalable algorithm which we call GP-GRIEF (Gaussian
Processes with Grid-Structured Eigenfunctions). In general, the cost of log-marginal likeli-
hood computations scale as O(np? +dnp-+dm®?), where d denotes the dataset dimensionality,
and p is the number of eigenfunctions that we will describe next. We emphasize that our
complexity is practically independent of m, which can generally be set arbitrarily high.
GP-GRIEF approximates an exact kernel as a finite sum of eigenfunctions which we accu-
rately compute using the Nystrom approximation conditioned on a huge number of inducing
points. In other words, our model is sparse in the kernel eigenfunctions rather than the number
of inducing points, which can greatly exceed the size of the training set due to the structure we
introduce. This is attractive since it is well-known that eigenfunctions produce the most com-
pact representation among orthogonal basis functions. Although the eigenfunctions used are
approximate, we demonstrate convergence in the limit of large m. Additionally, our ability to
fill out the input space with inducing points enables accurate global approximations of the eigen-
functions, even at test locations far from the training data. These basis functions also live in a
reproducing kernel Hilbert space, unlike some other sparse GPs whose bases have a pre-specified

form (e.g., Lazaro-Gredilla et al. (2010)). We summarize our main contributions below

o We break the curse of dimensionality incurred by placing inducing points on a full
Cartesian product grid. Typically, a grid of inducing points results in a computational
complexity that scales exponentially in d; however, we reduce this complexity to linear

in d by exploiting algebraic properties of Kronecker and Khatri-Rao products.

o We practically eliminate dependence of the inducing point quantity, m, on computa-
tional complexity. This allows us to choose m » n to provide a highly accurate kernel

approximation, even at locations far from the training data.

o We show that the Nystrom eigenfunction approximation becomes exact for large m,

which is achievable thanks to the structure and algebra we introduce.

« Applications of the developed algebra are discussed to enable the extension of structured
kernel interpolation methods for high-dimensional problems. We also develop an efficient

preconditioner for general kernel matrices.

o Finally, we demonstrate accurate inference on real-world datasets with up to 2 million

training points and m = 103? inducing points.
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We begin by introducing an eigenfunction kernel approximation in section 4.2. Section 4.3
demonstrates why we should use many inducing points and subsequently develops the algebra
necessary to make m » n efficient and stable. We finish with numerical studies in section 4.4,

demonstrating the performance of GP-GRIEF on real-world datasets.

4.2 Eigenfunction Kernel Approximation

We consider a compact representation of the GP prior using a truncated Mercer expansion
of the kernel k. We use the first p eigenfunctions which we approximate numerically using a

Nystrom approximation (Peng and Qi, 2015)

|M~a

;2 Ky uq; ()\ Kz qu) K, uvQS/A)'S,Q" Ky, ~k(x,z), (4.1)
¢1(X) b (Z)

where U = {u;e R4} | refers to the set of m inducing point locations; A,QeR™ ™ are diagonal
and unitary matrices containing the eigenvalues and eigenvectors of Ky u, respectively; A;
and q; denote the 7th largest eigenvalue and corresponding eigenvector of Ky v, respectively;
S, € RP*™ ig a sparse selection matrix where the ith row of S,,, denoted S,(i,:), contains one
value set to unity in the column corresponding to the index of the ith largest value on the
diagonal of A; and we use the shorthand notation A, = SpASZ = diag(A,) € RP*P to denote
a diagonal matrix containing the p largest eigenvalues of Ky y, sorted in descending order.
In this chapter, we use the notation [Kj i ; = k(a;,b;) such that Kx x € R"*" is the kernel
covariance matrix evaluated on the training dataset and Ky y € R'™ is the cross-covariance
between x and the set of inducing points U, for instance. Also, ¢;(x) is the numerical approx-
imation of the ith eigenfunction evaluated at the input x, scaled by the square root of the ith
eigenvalue. We only explicitly compute this scaled eigenfunction for numerical stability, as we

will discuss later. Using the kernel %, the prior covariance matrix on the training set becomes

Kxx=KxuQS; A, A, *S,Q Ky x, (4.2)
e e

where the columns of ® € R"*P contain the p scaled eigenfunctions of our kernel evaluated on
the training set. Observe that if U is randomly sampled from the set of training inputs X,
then IN{XQ; is the same covariance matrix from the “Nystrém method” of Williams and Seeger
(2001), however, since we have replaced the kernel and not just the covariance matrix, we
recover a valid probabilistic model (Peng and Qi, 2015).

While INCX,X has a rank of at most p, Peng and Qi (2015) show how a correction can be added
to k (eq. (4.1)) to give a full rank covariance matrix (provided k does also). The resulting
GP will be non-degenerate. We can write this correction as 6(x —z)(k(x,z) — k(x,z)), where

d(a)=1if a=0, else 0. This correction term was also discussed in eq. (2.36) and does not affect
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the computational complexity of GP training; however, we find it does not generally improve

performance over the unmodified £. We do not consider this correction in further discussion.

4.3 Grid-Structured Eigenfunctions (GRIEF)

Previous work employing Nystrom approximations in kernel methods require m to be
small (often « n) to yield computational benefits. As a result, the choice of inducing point
locations, U, has a great influence on the approximation accuracy, and many techniques have
been proposed to choose U effectively (Belabbas and Wolfe, 2009; Drineas and Mahoney,
2005; Gittens and Mahoney, 2013; Kumar et al., 2012; Li et al., 2016a; Musco and Musco,
2017; Smola and Scholkopf, 2000; Wang and Zhang, 2013; Zhang et al., 2008). In this work, we
would instead like to use so many inducing points that carefully optimizing the distribution
of U is unnecessary. We will even consider m » n. The following result shows how an

eigenfunction approximation can be improved by using many inducing points.

Theorem 4.1. If the ith eigenvalue of k is simple and non-zero and U > X, a Nystrom

approzimation of the ith kernel eigenfunction converges in the limit of large m,

n . / 1 m
qg ): lim —m _(m) KXquZ(- ), (43)
m—00 n )\

)

where )\gm) eR and qgm) e R™ are the ith largest eigenvalue and corresponding eigenvector of
Ky vy, respectively. qgn) is the kernel eigenfunction corresponding to the ith largest eigenvalue,

evaluated on the set X.

Proof. We begin by constructing a Nystrom approximation of the eigenfunction evaluated on

U, using X as inducing points. From theorem 3.5 of Baker (1977), as m — oo,

qz(' ):«/——(H)KU,XQE ) (4.4)
m )

where we assume that the ¢th eigenvalue of k is simple and non-zero. Multiplying both sides
by KX,UKG,IU,

1 (m n 1 _ n
KX,UKU}qu(’ ):\/EWKX,UKU}UKU,XQE ) (4.5)

Since U o X, Kxuy = S, Kyyu is a subset of the rows of Ky y, where S, € R"™ is a

selection matrix. We can write KX7UK6}UKU,X = SnKU7UK6}UKU7US£ = SnKU7US£ =Kxx.

i

1 m In 1 n
WKX,qu( ) = - (n) KX,qu( ) (46)

(3

Additionally, since the eigenvector g™ satisfies, KG}Uqgm) = ﬁq , we get
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Noting that nyxqz(") = Aﬁ") q§”) completes the proof. O

For multiple eigenvalues, it can similarly be shown that the ¢th approximated eigenfunction
converges to lie within the linear space of eigenfunctions corresponding to the ith eigenvalue
of k as m— 0.

We can use a large m by distributing inducing points on a Cartesian tensor product grid?.
Saatci (2011) demonstrated efficient GP inference when training points are distributed in
this way by exploiting Kronecker matrix algebra. We will assume this grid structure for
our inducing points, i.e., U will form a grid. If the covariance kernel satisfies the product
correlation rule (as many popular multidimensional kernels do), i.e., k(x,z) = H?zlk:i(xi,zi),
then Ky y € R™™ inherits the Kronecker product form Ky y = ®f:1K8?U, where ® is the
Kronecker product (Van Loan, 2000). K%?U € R™*™ are one-dimensional kernel covariance
matrices for a slice of the input space grid along the ith dimension, and m = #/m~O(10) is the
number of inducing points we choose along each dimension of the full grid. It is evident that
the Kronecker product leads to a large, expansive matrix from smaller ones, therefore, it is
very advantageous to manipulate and store these small matrices without “unpacking” them, or
explicitly computing the Kronecker product. Exploiting this structure decreases the storage
of Ky y from O(m?) — O(dm??) = O(dm?), and the cost of matrix-vector products with Ky y
from O(m?)—O(dm@*+V/?) = O(dm+1). Additionally, the cost of the eigendecomposition of
K.y decreases from O(m?) — O(dm?'?) = O(din?), and the eigenvector matrix Q = ®?_, Q"
and eigenvalue matrix A = diag( @?:1 /\(i)) both inherit a Kronecker product structure,

1) operations. See appendix A for an

enabling matrix-vector products with I~{X7X in O(dm
overview of Kronecker matrix algebra.

In low-dimensions, exploiting the Kronecker product structure of Ky y = ®?:1KS?U can
be greatly advantageous; however, we can immediately see from the above complexities that
the cost of matrix-vector products® with IN(XX increases exponentially in d. The storage
requirements will similarly increase exponentially since a vector of length m =m¢ needs to be
stored when a matrix-vector product is made with Q = ®f:1Q(i), and Kx y requires O(mn)
storage. This poor scaling poses a serious impediment to the application of this approach to
high-dimensional datasets.

We now show how to dramatically decrease time and storage requirements from exponential
to linear in d by identifying further matrix structure in our problem.

We begin by identifying structure in the exact cross-covariance between train (or test)

points and inducing points. These matrices, e.g., Kx y, admit a row-partitioned Khatri-Rao

1We want U to be sampled from the same distribution as the training data. Approximating the data distribution by placing
U on a grid is easy to do by various means as a quick preprocessing step since it implicitly assumes that the data distribution
factorizes between inputs.

2We assume that a conjugate gradient method would be employed for GP training requiring matrix-vector products.
Alternative formulations would require columns of Q = @f:IQ(i) to be expanded which similarly scales exponentially (O(m?)).
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product structure as follows (Nickson et al., 2015):

K{p(L) © Kp(l) ® - ® K1)
&

K20 ® Ku(2:) ® K&2))

d (i
Kxu= % Ky = . (T

K u(n:) ® Kipn) @ — ® Kiyn)

)

where = is the Khatri-Rao product whose computation gives a block Kronecker product
matrix (Liu and Trenkler, 2008). We will always mention how Khatri-Rao product blocks
are partitioned. Since Kg?U are only of size n x m, the storage of Kx vy has decreased from
exponential to linear in d: O(min) — O(dnm). We also observe that the selection matrix
S, =%, Sg) can be written as a row-partitioned Khatri-Rao product matrix where each sub-
matrix contains one non-zero per row. Further, by exploiting both Kronecker and Khatri-Rao
matrix algebra, our main result below shows that nyUQSg can be computed in O(dnp) time.
This is a dramatic reduction over the cost of O(mnp) time incurred by the naive approach.

d

Theorem 4.2. The product of a row-partitioned Khatri-Rao matriz K x ;= *leKg?Ue Rnxm®
a Kronecker product matriz Q = @LQ@) € Rmdxmd, and a column-partitioned Khatri-Rao

matrix SZ =%4 (S}(f))T eR™ P can be computed as follows:

d . . .
Kx,0QS; = (OKY Q7 (s))", (4.8)
i=1
where © is the (elementwise) Hadamard product. This computation only requires products of
the smaller matrices KSQUER"”_”, QW eR™ ™ gnd SS) e RP*™,

Proof. First, observe that Kx yQ= *f;lK:EQUQ(i) — %% R is a row-partitioned Khatri-Rao
product matrix using theorem 2 of (Liu and Trenkler, 2008). Now we must compute a matrix
product of row- and column-partitioned Khatri-Rao matrices. We observe that each element
of this matrix product is an inner product between two Kronecker product vectors, i.e.,
K g7, = a RO - d gTW . ) = TT1¢ . RO (. )STO(- ). Writi his i
[ X,UQ p]’b] - (®l:1 <Z7'))(®l:1 D (a])) - lel (Za') D (a]) riting this in
matrix form completes the proof. O

If all the sub-matrices were dense, O(dnmp) time would be required to compute KX7UQSZ;
however, since S, is a sparse selection matrix with one non-zero per row, computation requires
just O(dn max(p,mc)) ~ O(dnp) time. We achieve this time by computing only the necessary
columns of K;?UQ@ and avoiding redundant computations. The constant c is the average
number of non-zeros columns in each of {Sz(f) ¢ | which is typically O(1), but may be m in
the worst case. In other words, the time complexity of our approach is effectively independent
of the number of inducing points. Even in the rare worst case where ¢ = m and m? > p, the
scaling is weak; O(dnm?¥).

What results is a kernel composed of basis eigenfunctions that are accurately approxi-

mated on a grid of inducing points using a Nystrom approximation. Although m increases
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exponentially in d given this inducing point structure, the cost of GP training and inference
is not affected. We refer to the resulting model GP-GRIEF (GP with GRId-structured
EigenFunctions). Completing the computations required for GP training and inference
require straightforward application of the matrix-determinant and matrix-inversion lemmas

which are presented in eq. (5.3).

4.3.1 Eigenvalue Search

What has not been addressed is how to form S, = *;i:lsg‘) and compute A, efficiently. This
requires finding the index locations and values of the largest p eigenvalues in a vector of

4 In high dimensions, this task is daunting considering m can easily exceed

length m = m
the number of atoms in the observable universe in practice. Fortunately, the resulting vector
of eigenvalues, diag(A) = ®?:1)\(i), has a Kronecker product structure which we can exploit
to develop a fast search algorithm that requires only O(dmp) time. To do this, we compute
a truncated Kronecker product expansion by keeping only the p largest values after each
sequential Kronecker product such that only Kronecker products between length p and length
m vectors are computed. Algorithm 4.1 outlines a more numerically stable version of this search

strategy that computes the log of the eigenvalues and also demonstrates how S, is computed.

Algorithm 4.1 Computes S,, and log(A,) (the log of the p largest eigenvalues of Ky 7). We use zero-based
array indexing, mod(a,b) computes a mod b, |a| computes the length of a, sorty(a) returns the min(|al,b)
largest elements of a in descending order, as well as the indices of these elements in a, and |a| computes the
floor of the elements in a.

Input: {ADeR™}2_

Output: {Sg) eRP*™Yd | & log(A,)eRP

log(A;), idxs =sort,, (log()\(l)))

for i=2toddo
log(A,), ord =sort,, (log()\p) ® L + ljoga,) @ log()\(i)))
idxs= [ idxs(|ord/m],:), mod(ord,m) ]

end for

{Sz(f) = I (idxs(:,i—1),:) }j=1

4.3.2 Stable Computation in High Dimensions

Direct use of theorem 4.2 may lead to finite-precision rounding inaccuracies and overflow
errors in high dimensions because of the Hadamard product over d matrices. We can write a
more numerically stable version of this algorithm by taking the log of eq. (4.8), allowing us to

write the computation as a sum of d matrices, rather than a product

d d
KXvUQSg = () sign (B(i)) O exp <Z log (abs B(i))) ,
=1

=1
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where B® = KQ?UQ@ (SS))T, and exp, log are computed element-wise. While the sign matrix
is the Hadamard product of d matrices, it contains only {—1,0,1} so it is not susceptible to
numerical issues. Also, when the sign of an element is zero, we do not compute the log. Unfortu-
nately, the exp computation can still lead to numerical issues; however, ® suffers less because
of the rescaling provided by the eigenvalues (i.e., elements of ® are the quotient of possibly very

large or small values). Since all eigenvalues are positive, we can stably compute ® as follows:

N[

d d
® = (Kx,uQS])A; 2 =(>) sign(B”) ® exp (Z log (abs B®) — %1n10g(>\p)T> , (4.9)

i=1 i=1

where log(A,) is computed by algorithm 4.1.

4.3.3 Preconditioning Applications

As a side remark, we discuss the application of (IN{X,X +02I,)"! as a preconditioner for the
exact kernel matrix Kx x + %I, in moderately sized problems where O(n?) storage is not
prohibitive. The use of INCX,X for matrix preconditioning was explored with notable empirical
success by Cutajar et al. (2016) where a sub-set of training data was used as inducing points
giving Uc X and m <n. By theorem 4.1, we know that the Nystrom approximation converges
for large m, and we have shown that we can accommodate m » n to provide an accurate

low-rank kernel matrix approximation.

4.3.4 SKI Applications

As a further aside, we discuss how the developed algebra can be applied in a general kernel in-
terpolation setting. Wilson and Nickisch (2015) introduced a kernel interpolation perspective
to unify inducing point methods wherein the kernel is interpolated from a covariance matrix on
the inducing points. For instance, the subset of regressors (SoR) method (Quinionero-Candela
and Rasmussen, 2005; Silverman, 1985) can be viewed as a zero-mean GP interpolant of
the true kernel while Wilson and Nickisch (2015) proposed a sparse approximate interpolant.
We can denote the interpolated covariance matrix as EKU,UET, where E € R™™ is the
interpolation matrix.

In structured kernel interpolation (SKI) the inducing points form a grid such that Ky y
inherits a Kronecker product form. This can provide dramatic computational advantages;
however, SKI suffers from the exponential scaling discussed earlier and so is recommended
only for very low-dimensional problems, d <5 (Wilson et al., 2016). We observe that in the case
of the GP interpolant (e.g., SoR), as well as the sparse interpolant suggested by Wilson and
Nickisch (2015), the interpolation matrix E inherits a row-partitioned Khatri-Rao structure.
This enables direct use of theorem 4.2 to reduce the exponential scaling in d to a linear scaling,
and allows SKI to scale to high-dimensional problems. However, time complexity would scale

quadratically in n, unlike the proposed GRIEF method.
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4.4 Experimental Studies

Algorithm 4.2 Computation of the log marginal likelihood for GP-GRIEF.

Input: Grid of inducing points U= {u; eR?}™ | base kernel k; for i=1,...,d with hyperparameters 6.
Output: Log marginal likelihood logPr(y|6).

Compute Kg’)UeRmxm, using k; fori=1,....d.
Compute the eigenvalues of {KS?U}le as {AWeR™}4_ and the eigenvectors in the columns of {Q¥}2_,.
Compute {S}(f) eRP*™} and log(A,) €RP using algorithm 4.1.

Compute @ = (KX,UQSE)A;% using eq. (4.9).
Compute logPr(y|0) using eq. (2.29).

This section empirically assesses the proposed GP-GRIEF method. Algorithm 4.2 summa-
rizes the computation of the Gaussian process log-marginal likelihood using the GP-GRIEF
kernel. This demonstrates the operations necessary to estimate or marginalize the base
kernel hyperparameters which is typically the most expensive component of GP modelling.
The predictive posterior can also be computed using similar operations by replacing the
computation of ® with the basis functions evaluated at a test point and with the use of
eq. (2.16). A python implementation of the methods discussed in this chapter along with

several tutorials can be found at https://github.com/treforevans/gp_grief.

4.4.1 Two-Dimensional Visualization

Figure 4.1 shows a comparison between GP-GRIEF and the Variational Free Energy (VFE)
inducing point approximation (Titsias, 2009) on a two-dimensional test problem with n =10
training points generated by the function f(x)=sin(z)sin(zz) and corrupted with A (0, 0.1)
noise. For both models, we use a squared-exponential base kernel, and we estimate the kernel
lengthscale and noise variance, o2, by maximizing the log marginal likelihood. VFE can also
select its inducing point locations. In this study, we do not consider optimizing the GRIEF
weights, w. VFE with m = 4 inducing points achieves a root-mean squared error (RMSE)
of 0.47 on the test set, whereas GP-GRIEF with the same number of basis functions®, p = 4,
achieves an RMSE of 0.34, the same reconstruction error obtained by a full GP using the exact
kernel. While GP-GRIEF uses a dense grid of m =25 inducing points, it has a computational
complexity equivalent to VFE. This demonstrates the reconstruction power of GP-GRIEF,

even when very few eigenfunctions are considered.

4.4.2 Kernel Reconstruction Accuracy

We compare the kernel covariance reconstruction error of the GRIEF Nystrom method to com-
peting techniques in fig. 4.2. We sample 5000 points from 2(—+/3, v/3) in d =100 dimensions,
randomly taking half for training and half for testing, and we consider a squared-exponential

kernel. Given only the training set, we attempt to reconstruct the exact prior covariance

3Technically, VFE gives an infinite basis function expansion through a correction term; however, we will assume p=m=4.
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(a) Test Data. (b) VFE, m=4, RMSE=0.47 (c) GP-GRIEF, m =25, p=4, RMSE=0.34

Figure 4.1: Reconstruction using GP-GRIEF outperforms VFE. Both techniques use an equal number of basis functions and
have the same computational complexity. Crosses denote training point positions and dots denote inducing point locations.

matrices between the training set (fig. 4.2a), and the joint train/test set (4.2b). This allows
us to study the kernel reconstruction accuracy between points both within, and beyond the
training set. In both studies, the proposed GRIEF Nystréom method greatly outperforms
a random Fourier features reconstruction (Rahimi and Recht, 2007), and a randomized
Nystrom reconstruction where m = p inducing points are uniformly subsampled from the
training set. We emphasize that both randomized Nystrom and GRIEF Nystréom have the
same computational complexity for a given number of basis functions, p, even though the
GRIEF Nystrom method uses m = 102" inducing points (m = 100).

In the joint train/test study of fig. 4.2b, we observe a larger gap between GRIEF Nystrom
and randomized Nystrom than in fig. 4.2a. This is not surprising since the goal of the
randomized Nystrom method (and indeed all existing extensions to this technique) is to
improve the accuracy of eigenfunctions evaluated on the training set which does not guarantee
performance of the eigenfunctions evaluated on points outside this set. For example, if a test
point is placed far from the training set then we expect a poor approximation from existing
Nystrom methods. However, our GRIEF Nystrom approach attempts to fill out the input
space with inducing points everywhere, not just near training points. This guarantees an ac-
curate approximation at test locations even if they are far from training data. Comparatively,
the random Fourier features technique samples from a distribution that is independent of the
training data, so it is also expected to perform no worse on the joint set than the training set.
However, we observe that it provides an equally poor reconstruction on both sets due to the
slow convergence of the stochastic Monte Carlo approximation employed therein.

The black curves in fig. 4.2 show the exact eigen-decomposition of the covariance matrices
which demonstrates the optimal reconstruction accuracy for a kernel approximation with a
given number of basis functions. We observe that GP-GRIEF approaches this optimal accu-

racy in both studies, even though the test point distribution is not known at training time.
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Figure 4.2: Covariance matrix reconstruction error of GP-GRIEF beats randomized Nystréom with uniform sampling averaged
over 10 samples. GP-GRIEF approaches the optimal reconstruction accuracy of the black curve.

4.4.3 UCI Regression Studies

We next assess performance of GP-GRIEF on real-world regression datasets from the UCI
repository. Using the authors’ code, we report the mean and standard deviation of the
RMSE from 10-fold cross validation*. Also presented is the mean training time per fold on a
machine with two E5-2680 v3 processors. We use a squared-exponential kernel with automatic
relevance determination (SE-ARD), and we compare our test errors to those reported by Yang
et al. (2015) using type-II inference on the same train-test splits. Yang et al. (2015) used an
exact GP with an SE-ARD kernel for datasets with n <2000, and Fastfood expansions were
used to approximate the SE-ARD kernel for the larger datasets (n>2000).

Before training the GP-GRIEF model, we initialize the base kernel hyperparameters, 6,
by maximizing the marginal likelihood of an exact GP constructed on min(n, 1000) points
randomly selected from the dataset. We then train the model which we refer to as GP-
GRIEF-II since a type-II inference approach is taken to estimate kernel hyperparameters (see
section 2.3). GP-GRIEF-II uses the kernel from eq. (4.1) which is parametrized by the base
kernel hyperparameters: {6, 0%}. The presented training time includes log marginal likelihood
maximization to estimate the hyperparameters, beginning with the initialized values. For all
studies, we fix m = 10 and we make p proportional to n by rounding n down to the nearest
power of ten, or take 1000 if it is lesser, i.e., p=min(1000, 108107},

It can be observed from table 4.1 that GP-GRIEF-II outperforms the exact GP presented

490% train, 10% test per fold. We use the same splits as Yang et al. (2015)
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GP-GRIEF-II Yang et al. (2015)
Dataset n d m=m? p Time RMSE RMSE
challenger 23 4 104 10 0 0.554+0.277 0.63+0.26
fertility 100 9 109 100 0.001 0.172+0.055 0.21+0.05
slump 103 7 107 100 0 3.972+1.891 4.72+2.42
automobile 159 25 10% 100 0.007 0.145+0.057 0.1840.07
servo 167 4 104 100 0 0.28040.085 0.28+0.09
cancer 194 33 1033 100 0.007 27.843+3.910 35+4
hardware 209 7 107 100 0 0.408+0.046 0.43+0.04
yacht 308 6 108 100 0.001 0.170+0.083 0.16+0.11
autompg 392 7 107 100  0.001 2.607+0.356 2.63+0.38
housing 506 13 1013 100 0.004 3.212+0.864 2.91+0.54
forest 517 12 1012 100 0.001 1.386+0.14 1.3940.16
stock 536 1 10! 100  0.001 0.005+0.000 0.00540.001
energy 768 8 108 100  0.002 0.49+0.057 0.46+0.07
concrete 1030 8 108 1000 0.008 5.232+0.723 4.95+0.77
solar 1066 10 1010 1000 0.003 0.786+0.198 0.83+0.20
wine 1599 11 101! 1000 0.012  0.483+0.052 0.47+0.08
skilleraft 3338 19 10 1000 0.011 0.248+0.016 0.25+0.02
pumadyn 8192 32 1032 1000 0.156 0.20+0.00 0.20+0.00
elevators 16599 18 1018 1000  0.283 0.091+0.002 0.090+0.001
kin40k 40000 8 108 1000 0.38  0.206+0.004 0.28+0.01
keggu 63608 27 10?7 1000 3.642 0.118+0.003 0.124+0.00
3droad 434874 3 103 1000 0.869 11.648+0.281 10.91+0.05
electric 2049280 11 10! 1000 8.019 0.064+0.002 0.12+0.12

63

Table 4.1: Mean and standard deviation of test error and average training time (including hyperparameter estimation, in hours)
from 10-fold cross validation (90% train, 10% test per fold) on UCI regression datasets.

by Yang et al. (2015) on nearly every small dataset (n < 2000). On the larger datasets,
the GP-GRIEF technique shows comparable test error to Yang et al. (2015) but performs
considerably better on kin40k and the electric dataset with two-million training points.

The independence of computational complexity on m allows enormous numbers of inducing
points to be used. We use m =103 inducing points for the cancer dataset which demonstrates
the efficiency of the matrix algebra employed since storing a double-precision vector of this

length requires 8 quadrillion exabytes; far more than all combined hard-disk space on earth.

4.5 Conclusions

The new technique, GP-GRIEF, has demonstrated a kernel approximation strategy whose
complexity is nearly independent of m, allowing us to break the curse of dimensionality
inherent to methods that manipulate distributions of points on a full Cartesian product
grid. Asymptotic results were also presented to show why a choice of large m is important to
provide an accurate global kernel approximation. Lastly, we considered the use of up to 1033
inducing points in our regression studies, demonstrating the efficiency of the matrix algebra
employed. We discussed how the developed algebra can be used in areas beyond the focus
of the numerical studies, such as in a general kernel interpolation framework, or in general
kernel matrix preconditioning applications. However, it will be interesting to explore what

other applications could exploit the developed matrix algebra techniques.



Chapter 5

Scaling Type-I Inference

with Gaussian Processes

In this chapter, we introduce a Gaussian process covariance function that enables computation
of the log marginal likelihood and all hyperparameter derivatives with a complexity that is
independent of the quantity of training data. After an initial setup cost of O(nm?) time, the
approach requires only O(m) time and O(m) memory per log marginal likelihood evaluation
where n is the number of training examples, and m is the number of basis functions used in the
kernel parameterization. The unique kernel parameterization approach is flexible, and the basis
function can be of any form, making the approach highly general. The fast likelihood evaluation
enables type-I or IT Bayesian inference on large-scale datasets. We also provide an asymptotic
result showing that any stationary kernel can be recovered when using the developed kernel.
We benchmark our algorithms on real-world problems with up to two-million training points.

The following paper was published from some of the content in this chapter:

T. W. Evans and P. B. Nair (2018c). “Scalable Gaussian Processes with Grid-
Structured Eigenfunctions (GP-GRIEF)”. in: International Conference on Machine
Learning, pp. 1416-1425, section 5 and appendices A & B.

5.1 Introduction

As discussed in section 2.3, there are a couple of common ways to deal with free covariance
function hyperparameters: through estimation of the hyperparameters by maximization of the
marginal likelihood (referred to as type-II inference, or empirical Bayes), or through marginal-
ization of the hyperparameters using Bayes’ rule (which we refer to as type-I inference).
In both cases, an iterative approach is generally required: typically an iterative numerical
optimization procedure for type-1I inference or a Markov chain Monte Carlo (MCMC) method
for type-I inference.

All else being equal, a type-I inference approach is generally preferred since a type-II ap-

proach does not take into account the uncertainty over hyperparameters and tends to provide

64
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over confident predictions, as was discussed in section 2.3. Unfortunately, a type-I approach is
far more computationally expensive in practice. To understand why this is the case, first note
that the per-iteration complexity of type-II inference (to perform numerical optimization) or
type-I inference (to perform MCMC) are nearly identical with the most expensive computation
required at each iteration being an evaluation of the marginal likelihood. This evaluation
generally costs O(n?) time for a Gaussian process (eq. (2.30)) which is a significant expense for
large datasets. Type-I inference also requires far more iterations (evaluations of the marginal
likelihood) than type-IT inference and therefore has to perform many more O(n?) computa-
tions. In practice, type-I marginalization of hyperparameters by MCMC often use several
orders of magnitude more iterations than type-II optimization of hyperparameters. The
reason for this largely discrepancy in the iteration count is partially due to the differences in
convergence rates for the (stochastic) MCMC method verses the (deterministic) optimization
approach. In addition, while optimality conditions are easily assessed, convergence of MCMC
is much more difficult to quantify which makes termination conditions difficult to design.
Towards this end there has been significant work to design sparse Gaussian processes which
reduce the cost of GP marginal likelihood computations as discussed in section 2.4.1. For
instance, a degenerate Gaussian process using m basis functions to approximate a desired GP
prior admits a marginal likelihood evaluation in O(m?n +m?) time using eq. (2.29). While
this is an improvement, this model still contains a linear dependence on the number of training
observations n as well as a cubic complexity on the number of kernel basis functions which
is generally required to be large for complicated modelling problems. Such models therefore
still struggle to perform type-I inference by MCMC on large and complicated problems. In
this chapter we significantly improve upon this asymptotic scaling. Here we summarize the

main contributions of the chapter:

e A new covariance function parameterization is developed that enables computation of
the GP marginal likelihood in as little as O(m) time. Note that this is independent of
the quantity of training data.

o It is shown that this parameterization recovers several popular kernels where fast

evidence computations have not yet been exploited.

o The flexibility of the parameterization is demonstrated through a theoretical result that

shows how any stationary kernel can be asymptotically recovered.

« Finally, we demonstrate accurate and rapid type-I GP inference on real-world datasets

with up to 2 million training points.

Section 5.2 begins by introducing the employed kernel parameterization and discusses how
computation of the Gaussian log marginal likelihood can be performed with a complexity that
is independent of the quantity of training data. Section 5.3 discusses various applications of
the developed kernels for specific choices of basis functions and basis function priors. Finally,

experimental studies are performed in section 5.4 and conclusions are presented in section 5.5.



CHAPTER 5. SCALING TYPE-I INFERENCE WITH GAUSSIAN PROCESSES 66

5.2 Re-weighted Basis Kernel

In this chapter, we consider a sparse Gaussian process model using the following finite basis

kernel,

k(x,2)=¢(x)' S $(2), (5.1)

where SeR™ ™ and ¢ : R? — R. As was discussed in detail in section 2.2, using this kernel
for a Gaussian process covariance function directly specifies a function space prior; however,
we can also consider a weight space perspective to describe the following equivalent model:
consider a generalized linear model of the form f(x) = >, w;¢;(x), where the weight space
prior is Pr(w) = N(w|0, S7'), and the likelihood is Pr(y|X,w) = N (y|®w, ¢°1,). In
our notation, S € R™*™ is a symmetric and positive definite weight prior precision matrix,
® e R™™ where ¢;; = ¢;(x;), contains the evaluations of all m basis functions at all n training
points, and we R™ are the basis function weights. Using the kernel in eq. (5.1), the covariance

matrix evaluated on the training set inputs becomes
Kxx=®S'®". (5.2)

In this chapter, we use the notation [Kj )i ; = k(a;,b;) such that Kx x € R"*" is the kernel
covariance matrix evaluated on the training dataset and K, x € R'*" is the cross-covariance
between z € R? and the training dataset X, for instance. For the kernel in eq. (5.1), we
consider the set of kernel hyperparameters to define the prior precision matrix S. We call this
the “re-weighted basis” kernel since we will infer the prior over the basis function weights. If
the matrix S is diagonal (which assumes no prior correlation between the basis functions),
a parameterization could simply be the positive diagonal values themselves. If S is to be
dense, see (Pinheiro and Bates, 1996) for a discussion on parameterization options. We will
introduce specific parameterizations later in this chapter where needed.

Since the kernel is now heavily parametrized (e.g., the diagonal parameterization of S con-
tains O(m) hyperparameters), maximizing the Gaussian process log marginal likelihood (or
log evidence) for type-1I Bayesian inference could be susceptible to overfitting (see discussion in
section 2.3). Instead, we may choose to take a fully Bayesian type-I approach and integrate out
the hyperparameters using hybrid Markov chain Monte Carlo (MCMC) sampling. This type-I
approach requires orders of magnitude more log-marginal likelihood (LML) evaluations than
a type-1I approach; however, we show that fast evaluations make this tractable even for very
large problems. Namely, we show that the cost per iteration can be independent of the number
of training points. What follows is an in-depth discussion about computations of the LML.
We show that various algebraic manipulations allow significantly accelerated computations.

Computation of the Gaussian process log marginal likelihood in eq. (2.30) simply requires

the following operations which can be computed efficiently using the matrix inversion lemma
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and the matrix determinant lemma, respectively (Harville, 2006),

y" (Kxx+021,) 'y =02 (yTy_ (@"y)" (c*s+o7®) " (q)Ty)> . and (53)
log‘KX7X+a2In| =10g‘028—|—<I>T<I>‘ —log‘S‘ +(n—m)logc?, .

The above computations enable evaluation of the LML with a finite basis kernel in O (nm? +m3)
time and with O(nm+m?) storage. In fact, we had already used these algebraic operations to
demonstrate efficient computation of the LML in eq. (2.29). Here we revisit the form of this
computation to identify and exploit further algebraic properties. Specifically, we demonstrate
that after an initial setup step, the log marginal likelihood (LML) and all hyperparameter
derivatives can be computed in as little as O(m) time. To do this, we first assume that

y'yeR, ®'y =re R™, and ®'® = A € R™*™ are precomputed, which requires O(nm?)
time; however, this step only needs to be done once before LML iterations begin. We will next
proceed to demonstrate how all computations can be performed in O(m?) for a general prior
structure and then discuss how this can be further accelerated to O(m?) time. Finally, we show

how computations can be reduced again to @(m) when additional assumptions are made.

5.2.1 O(m?) Evidence Computations

To begin, observe that we can re-write the computations required for LML evaluation in
eq. (5.3) to give

yT (Kxx+0°L,) _ly =g 2 (yTy— rTP_lr) , and

5.4
log’KxX—l—aQIn}zlog’P’—log‘S‘—l—(n—m)logaz, (54)

where we used the shorthand P = 028 + A € R™*™. Using these relations, LML iterations
can be computed in O(m?) time and O(m?) storage. Observe that the complexity of these
computations are now independent of the quantity of training data, n. This means that
performing inference on larger datasets does not require additional computational resources,
an attractive property.

The LML derivatives with respect to all hyperparameters can also be computed in O(m?)
as shown in the following expression which is derived in appendix C. Note that here we
assume the parameterization S = diag(~y~!), where v € (0,00)™, and the precision is evidently

a diagonal matrix. The derivatives can be written as follows:

OLML (r—AP7'r)’ diag(A)-(AGP'A)"1,

oy - 204 B 202 , and (5.5)
LML  yTy—2r"P 'r+r"P'AP v n-Tr(P'A) '
o2 204 B 202 ’

where ® denotes the elementwise product. Note that if a dense prior precision is chosen,

automatic differentiation can alternatively be used to compute derivatives rapidly. These
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computations are summarized in algorithm 5.1.

5.2.2 (O(m?) Evidence Computations

To further reduce the per-iteration computational complexity from O(m?) — O(m?) we
apply a linear transformation to the basis functions to make them mutually orthogonal
when evaluated on the training data. We can write the ith transformed basis function as
di(x) = Dije @iifilqﬁi(x), where 3 € R™*™ is a diagonal matrix containing the non-zero
singular values of ®, V € R™*™ contains the corresponding right-singular vectors of ®, and

m<min(m, n). With this transformation, we can re-write eq. (5.2) as
A1 T
Kxx=®S & (5.6)

where ® = <I>\~7§~]_1 e R™™ is an orthogonal matrix composed of the transformed basis
functions evaluated on the training dataset (its columns contain the left-singular vectors of
®), and ST =SV S TIVE R s the prior covariance matrix over the transformed basis
functions. Using this parameterization, A = <fT<f =15 becomes a diagonal matrix, however,
§_1 will generally be dense even if S™' is diagonal. We therefore must consider a dense
parameterization of §71. Namely we make the choice of the following spectral (or rotational)

parameterization which can represent any precision matrix (Pinheiro and Bates, 1996)
S=UDU”, (5.7)

where U € R™*™ is a unitary matrix with eigenvectors in its columns, and D € R™*™ is a

diagonal matrix containing the eigenvalues. With this parameterization, we can write
~ ~T~
P=0°S+® ®=U(c’D+1;)U". (5.8)

Given these spectral forms, the computations in eq. (5.4) can be performed rapidly.
Namely, log ’P‘ and log ‘g‘ can evidently be performed in O(m), and the computation of
r’Plr = rTU(a2D +Iﬁl) Uy is dominated by the cost of the matrix-vector product U”r.
The cost of this matrix-vector product may depend on the parameterization of U; however,
we choose a particular parameterization composed of a matrix product of m Householder
matrices. This parameterization is general; it can be shown that any unitary matrix U can
be represented as a product of m Householder matrices (e.g., (Tomczak and Welling, 2016)).
Since a matrix-vector product with each Householder matrix can be computed in O(m),' the
matrix-vector product U”r can be computed within O(m?) < O(m?).

We have therefore demonstrated that all LML operations can be performed within
O(m?). We also note that while the linear transformation of the basis functions requires the

singular-value decomposition of ® before LML iterations, this precomputation is no more

1This is because a Householder matrix is simply the addition of the identity matrix and a rank-one matrix. See (Tomczak and
Welling, 2016, eqn. 7), for example.
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expensive than those discussed previously at O(nm?)<O(nm?). The approach is also just as
general as the O(m3) approach described in section 5.2.1 and is therefore a clear algorithmic
improvement; however, there are reasons that the O(m?3) approach may be preferred in
practice. For instance, specifying a hyper-prior over the parameters of S may be less-intuitive
then specifying a prior over the parameters of S as a result of the linear transformation applied
to the basis functions (especially since this transformation is data-dependent). Also, while
the suggested Householder parameterization enables reduction of computational complexity
to O(m?), it is challenging to parallelize the resulting matrix operations and this may result
in slower runtimes than the O(m3) approach in practice.

As a final remark, the full m basis functions should ideally be used for predictive posterior
covariance computations (see eq. (2.16)), not just the m < min(m, n) terms used for LML
computations. The m —m basis functions were eliminated from computations in this section
since they are orthogonal to the training data and therefore do not effect the LML computa-
tions; however, they may effect the predictive posterior variance (uncertainty) far from the
training data. Ignoring these basis functions will result in uncertainty being underestimated
at test time. Note that including these m — m basis functions will not effect the predictive

posterior mean when the GP prior has zero mean.

5.2.3 O(m) Evidence Computations

As mentioned in the preceding section, §_1 will generally be dense even if S™' is diagonal;
however, if we directly parameterize S as a diagonal matrix then P = 028 + A will become
a diagonal matrix and evaluation of the LML and all derivatives can be performed in O(m)
using eq. (5.4) and the derivative expressions in eq. (5.5) (recall that A = I; becomes a
diagonal matrix when we use the transformed basis functions ‘i)

An alternative way of viewing the choice of a diagonal S is to impose U=1 in eq. (5.7).2
Clearly this choice would ensure that U”r could be computed within O(m) and therefore
would ensure an overall complexity of O(m). In appendix C, the LML derivatives are also
presented which can be computed in O(m) as well.

Imposing a diagonal S is somewhat strange in the sense that the structure of the basis
function prior precision is being selected based upon the data. We therefore consider that this
O(m) approach involves a further approximation and is not as general as the approaches in

sections 5.2.1 and 5.2.2; however, we have found that it performs well in practice.

5.2.4 Prior over Noise Variance

Inference may be performed over the observation noise variance o2 if there is uncertainty

over this value a priori. Observing the computations required for the Gaussian process LML

2More generally, we can achieve O(m) LML computations if U is parameterized by a product of O(1) Householder matrices.
This would give improved parameterization flexibility over the choice of U =1I5; while still ensuring an O(m) runtime (albeit with
a slightly greater computational expense).
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evaluation in eq. (5.4), it is evident that recomputing the LML at a different value of o2 has an
incremental cost of only O(1). Therefore specifying a prior over the noise variance in addition
to the basis function prior precision does not effect the computational complexities reported
in sections 5.2.1 to 5.2.3.

5.2.5 Non-Zero Prior Mean

We may also consider specifying a non-zero prior mean for the basis function weights;
w~N (W| u, S_l), where g € R™. This is equivalent to specifying a GP with the kernel
in eq. (5.1) and the prior mean function >, p;¢;(x). In this case, it can be observed
that computation of the log-marginal likelihood can still be performed with a complexity
independent of n through the relations discussed in sections 5.2.1 to 5.2.3 where r is replaced
by r— Ap, and y'y is replaced by y'y — 2r" u+ pu” Ap. Similar to the parameterization of
S, we may also specify a hyper-prior on the elements of p and either estimate or marginalize
these variables as well. Both of these extensions increase the flexibility of the Bayesian model
while ensuring that the computational complexity remains independent of the training dataset

size, a necessity for performing type-I inference on massive datasets.

5.3 Applications

In this section, we discuss various applications of re-weighted basis kernels for specific choices

of basis functions and basis function priors.

5.3.1 Importance-Weighted Random Fourier Features

We outline a novel approach to GP inference with random Fourier features which is amenable
to the fast LML computation methods outlined in section 5.2. Before outlining the new

approach, we provide background on the random Fourier features kernel approximation.

Background on Random Fourier Features

Bochner’s theorem (Stein, 1999, p. 24) states that any stationary covariance func-
tion, k(x;,x;) = k(x; — x;) = k(7), can be represented as the Fourier transform of a
positive finite measure. We refer to this finite measure as the power spectrum S(€) and since
it is positive, we can define a probability measure that is proportional to S, i.e., S(&) oc Pr(&).

The proportionality constant can be found by evaluating the kernel at 7 =0 as follows:

S(&)=k(0)Pr(&) =0 Pr(€),

where o7 > 0 is simply the variance (or amplitude) of the kernel k. We can now define the

kernel k as the Fourier transform of the power spectrum S as follows (Lazaro-Gredilla et al.,
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2010, eq. 11):

k(x;,x;)=k(T)= Jexp (2mie" (x;—x;))S(&)dé =05 Jexp (2mie" ;) (exp (2mie"x;) ) *Pr(ﬁ)dﬁ,

R4 R4

=05 Epy(e) [exp (27Ti€TXi) (exp (27Ti€TXj) ) *] :

where we have replaced the power spectrum with the probability measure and identified the
resulting expression as an expectation. Note that a superscript asterisk ()* denotes complex
conjugation. To recover a real-valued kernel, the power spectrum must be symmetric around
zero (i.e., Pr(§) = Pr(—€)). Rewriting the preceding equation we see that this causes the

imaginary terms to cancel, as follows:

k(x;,x;) = 0—8 Epy¢) [exp (27m'£Txi) (exp (27rz'€ij) ) " + (exp (2m’€TxZ-) ) *exp (QWiETXj)] ,

2
=03 Epy(¢) Re{exp (2772'£Txi) (exp (2m’€ij)> }] ,
=0 Ep () cos(27r£T(xi—xj))], (5.9)
=0 Ep.¢) _cos (27T£Txi) cos (27T£ij) +sin (27T€TXZ'> sin (27T€ij) ] . (5.10)
The integral in eq. (5.10) can be approximated by a Monte Carlo estimator using m/2 samples
as follows:
20_2 m/2
k(x;,xj) ~ =2 Z [cos (27r£zxi) Ccos (27T€ZX]') +sin (27r£fxi) sin (27r€;‘npxj) ] ,
m
r=1
202 T
_ 2% (% ), 5.11
0 )" () (5.11)

where &, ~ Pr(£), m is assumed to be divisible by two, and we denote the m basis functions

of the kernel approximation as

$(x) =[cos(2m&] x), sin(2m€] ), ..., cos(27r£fl/2x), sin(27r£fl/2x)]T. (5.12)

The basis functions of the kernel approximation are simply trigonometric functions, and
through comparison with eq. (5.1), the basis function prior precision is given by S = 5oLy This
kernel approximation can be used for any real-valued stationary kernel and has the attractive
property that it will remain stationary for any m (this can be seen by inspection of eq. (5.9), and
also note that we still require m to be devisable by two). Additionally, by the strong law of large

numbers, this Monte Carlo approximation procedure will converge to the true kernel as m — co.

Example: Exponentiated Quadratic Kernel Power Spectrum

The stationary kernel being approximated in eq. (5.11) depends only on the power spectrum

S. As an example, we now derive the power spectrum of the exponentiated quadratic
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kernel (eq. (2.28)). This can be achieved by the following Fourier transform (note we divide
by the kernel variance to give a probability measure) (Lazaro-Gredilla et al., 2010, eq. 12)

Pr(¢) = ﬁjexp(—Zm’{TT) k(T)dT =~/]2nAlexp(—2m°6" A&) =N (&

R4

0, ;A—l)7

@y
(5.13)

which is evidently a multivariate Gaussian distribution. Note that since the basis functions
in eq. (5.12) are all functions of & = 27¢, it is more convenient to simply sample from the

distribution A'(¢'|0, A™') in a practical implementation.

Importance Weighting Spectral Points

We have previously demonstrated how the finite basis kernel approximation in eq. (5.11) is
derived from a Monte Carlo approximation using the finite set of spectral points, £;,£5,..,&,,, o-
Typically, during hyperparameter estimation or marginalization when the kernel being
approximated is changed, the spectral points are modified to deliver a consistent Monte Carlo
approximation (Lazaro-Gredilla et al., 2010). This unfortunately means that when kernel
hyperparameters are changed, the basis functions ¢(x) also change and so we cannot use the
techniques introduced in section 5.2 for fast type-I or type-II inference. The following result
introduces a novel way to adjust the random Fourier features kernel approximation in a way

that is amenable to the fast inference techniques outlined in section 5.2.

Theorem 5.1. Let ky : R? x R — R and ks : R? x R? — R denote two real stationary
kernels whose power spectra share the same support and let Pry and Pry denote d-dimensional
probability distributions proportional to the power spectra of ki and ko, respectively. Then the
following equality holds

kao(x,z) = lim ¢(x)"S ' p(z),

m—00

where ¢(x) is given by eq. (5.12) with & ~ Pry(€) fori=1, 2,..., m/2, and the basis function

prior precision matriz is given by

s {simen].. [ 1]

Proof. We begin by rewriting eq. (5.10) to approximate ks as follows:

ka(x, z) =k2(0) Epy,y e [cos (27T€TX) cos (27T£Tz) +sin (27TETX) sin (QWSTZ)] ,
=k(0) f (cos (27T£TX> Ccos (27r€Tz) +sin (27TETX) sin (27r£Tz) ) Pry(&)dE.
R4

We now multiply and divide the integrand in the preceding equation by Pr; to give an expec-
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tation over Prq. This operation is equivalent to the introduction of a proposal distribution Pry

as used in importance sampling (Owen, 2013) and gives

Pry(€)
Pry(§)

ko (x, z) =k2(0) f <COS (27€"x) cos (2m€" z) +sin (2r€" x)sin (QWETZ)) Pry(&)dE,

We can now take a Monte Carlo estimator of this expectation with m/2 samples

oS (27T£Tx) cos (27T£Tz) + sin (ZWETX) sin (27T£Tz) } .

m/2
o(x, 7) = ZkZEO) Z lgijf:; cos(2m€} x) cos (2m€ ]l z) + iiigé:;sin@ﬂgf}c) sin (2#{?2)],

2k (0) Pra (&)
o

where &, ~ Pry(§) for r=1, 2,..., m/2, the operator [-] rounds its argument up to the nearest
integer, the basis functions ¢(x) are given by eq. (5.12), and the equality holds in the limit of
m — oo by the strong law of large numbers provided Pr; and Prj share the same support (Owen,

2013). Writing the preceding equation in matrix form completes the proof. ]

The proof involves an application of importance sampling, a technique commonly used to
reduce the variance of Monte Carlo estimators (Owen, 2013). In the situation outlined here,
the proposal distribution is not selected to reduce the variance, but rather to eliminate bias
such that the estimator converges in the limit of large m. This result allows a practitioner
to begin with spectral samples from kernel k; and re-use those same samples (and thus
basis functions) to approximate a different kernel ko by simply importance weighting the
basis functions. This importance weighting simply requires changing the basis function prior
precision matrix but does not require any changes to the basis functions. Ultimately, the result
enables a practitioner to change hyperparameters of an interpretable and non-degenerate
kernel, re-approximate the kernel by a finite-basis function expansion, and re-evaluate the
log-marginal likelihood with a complexity that is independent of the quantity of training data
through the use of the techniques discussed in section 5.2.

Theorem 5.1 does have a condition for convergence; the power spectra of the original
kernel (k) and the modified kernel (ky) must share the same support. For many commonly
used kernels, the power spectrum support spans all real numbers irrespective of kernel
hyperparameters, so this condition is not particularly restrictive. For instance, this condition
is met for an exponentiated quadratic kernel since Pr(&) is Gaussian as shown in eq. (5.13).

We visualize the importance weighted random Fourier features kernel in fig. 5.1. The approx-
imations used m/2 = 250 spectral points which were sampled according to the power spectrum
of the exponentiated quadratic kernel with lengthscale hyperparameter 2 = 0.1. The same spec-

tral points (and thus the same basis functions) were used for all three kernels plotted but the fea-
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Figure 5.1: Importance weighted random Fourier features kernel with varying lengthscales. The exact exponentiated quadratic

kernel being approximated is shown by the broken lines. The approximations used m/2 = 250 spectral points which were sampled
according to the power spectrum of the ¢2 =0.1 kernel.

tures were importance weighted according to theorem 5.1. Evidently the kernel approximation
remains accurate despite the significant change in kernel lengthscale from the original (£2=0.1)
kernel. Note that the random Fourier features kernel approximation remains stationary.

We can also extend the result of theorem 5.1 to asymptotically recover any stationary

kernel as m— o0 so long as the power spectra of k1 has support over all real numbers.

Theorem 5.2. Any real stationary kernel ko can be represented as

kao(x,z) = lim ¢(x)"S ' o(z),

m—00

where ¢ : R — R is given by eq. (5.12) with &, ~ Pry(§) fori=1, 2,..., m/2, Pri(€) >0 and
Pri(&) = Pri(—€) for all €eR?, and S is given in theorem 5.1.

This result is a logical extension of theorem 5.1; however, suggests an interesting parameter-

ization. Namely, if the conditions in theorem 5.2 are met and we choose to parameterize S by

. 10
S=d1ag(v)®[ 01 ],
where ve RT/ % is a vector of kernel parameters, modifying the values of v allows this parame-
terization to recover any stationary kernel as m — co. This is a powerful parameterization that
enables LML evaluations with a complexity that is independent of the quantity of training
data while enabling broad class of kernels to be recovered.
As a final remark, theorem 5.2 can be extended to recover any non-stationary covariance

function by considering non-stationary random Fourier features as introduced by Ton et al.
(2018).



CHAPTER 5. SCALING TYPE-I INFERENCE WITH GAUSSIAN PROCESSES 75
5.3.2 The Relevance Vector Machine

The re-weighted basis kernel (eq. (5.1)) has the same structure as the relevance vector
machine (Tipping, 2000) and thus the techniques developed in this chapter can be directly
applied to this technique. In the simplest form of a relevance vector machine, the basis
function weight prior precision is parameterized as S =diag(s), where se (0,00)™ are separate
prior precision hyperparameters for each basis function. When we maximize the evidence
with respect to s by empirical Bayes, a significant fraction of them will tend to infinity and
the posterior distribution over the corresponding weight parameters will be concentrated at
zero, thus achieving model sparsity. Training of the relevance vector machine can evidently
take advantage of the fast O(m?) LML computations introduced in section 5.2.1 to optimize
the precision parameters. The O(m) LML computation approach outlined in section 5.2.3
could also be applied to relevance vector machines; however, the resulting model would then
be sparse in the transformed parameters which may not be ideal for some applications.
Another approach to relevance vector machines is to place an independent Gamma hyper-
prior over the precision parameters s (such that the effective prior over the basis function
weights is an independent Student-¢ distribution) and then compute the maximum posterior es-
timate of s which will be sparse (Tipping, 2001). While the techniques of this chapter can again
be used here to rapidly find the maximum posterior estimate of s, the fast LML computations of
section 5.2 could alternatively be used to perform type-I inference to marginalize the precision
parameters s. Such an approach is not typically considered for relevance vector machines since
the cost to do so is typically prohibitive; however, this concern is alleviated based upon the tech-

niques outlined in this chapter. Relevance vector machines are considered again in section 6.4.6.

5.3.3 Fixed Basis Kernel Interpolation

The re-weighted basis kernel (eq. (5.1)) could be considered as a finite basis function ap-
proximation of a non-degenerate kernel k with an infinite basis function expansion. Such a
kernel approximation is often used to reduce computational requirements over exact GPs (see
section 2.4.1). One approach to taking a finite basis expansion to an exact kernel is using
kernel interpolation (Wilson and Nickisch, 2015). In this case, k(x,z) = w(x)! Ky yw(z),
where w(x) € R™ is the interpolation function between the input and the m inducing points
at locations U in input space. This effectively approximates the kernel by interpolating the
matrix I_(U7U eR™*™ created by exact evaluations of k on the inducing points U.

Natural choices for the interpolation functions are a global GP interpolant w(x) = KG}UKU,x
which gives the Nystrom approximation (Smola and Bartlett, 2001; Williams and Seeger, 2001),
a Sheppard interpolant or one of its variants such as a nearest neighbours interpolant (Shepard,
1968), or if the set U lies on a grid then a sparse Lagrange interpolant (Wilson and Nickisch,
2015).
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If the interpolation function is fixed?, then we can change the exact kernel being approxi-
mated entirely and compute the LML in a time independent of n using the techniques from
section 5.2. To see this, consider the case where ® = WeR™ ™ and S~ = RU,U-

For this kernel interpolation strategy, we are not restricted to any particular form of kernel
that can be used to represent I_(U7U. For example, if k& were an exponentiated quadratic
kernel (eq. (2.28)), the kernel lengthscale could be adjusted and the LML could be recomputed
in a time that this independent of the number of training observations. We also have the
ability to use flexible families of kernels such as spectral mixture kernels (Remes et al., 2017),
or deep kernels (Wilson et al., 2016). Alternatively, we do not need to specify a kernel for
I_(U,U at all; we can simply directly parameterize an arbitrary symmetric positive definite
matrix allowing any kernel to be approximated. It is important to note that since we can
perform LML iterations so rapidly, it is possible to take a fully Bayesian type-I approach to
marginalize the hyperparameters of the exact kernel and so are not at risk of overfitting since
the uncertainty of theses parameters are accounted for.

Remark: This approach can be easily extended for additive kernels. One particular case of
interest is where the interpolation function for each of ¢ additive kernel components are identi-
cal, in which case we would have ® = 17 @ W, where 1,€ R’ is a vector on ones and W is the inter-
polation matrix used for all additive kernel components. This matrix structure, along with the

fact that the prior covariance S~ is block-diagonal, can give substantial computational savings.

5.3.4 Eigenfunction Bases

Considering kernel eigenfunctions for basis functions are attractive since we can approximately
recover a wide class of kernels by modifying the weights associated with the kernel eigenfunc-
tions (Buhmann, 2003). For example, as basis functions we could consider grid-structured
eigenfunctions (GRIEF) outlined in chapter 4. To do this we can apply the re-weighted basis
kernel in eq. (5.1) using the basis functions ® defined in eq. (4.2), and parameterize S as a
diagonal matrix. We can then fix hyperparameters @ such that ® remains constant.

Also, Solin and Sérkka (2020) introduce a finite basis kernel approximation strategy
wherein the basis functions used are eigenfunctions of the Laplace operator in a compact sub-
set of R, Since the eigenfunctions do not change when kernel hyperparameters are changed,
the basis function prior is all that needs to be modified to update the hyperparameters. Thus,
the use of these kernel approximation strategies together with the techniques presented in
section 5.2 could naturally enable LML computations with a complexity that is independent

of n to facilitate fast type-I inference.

3The interpolation function is naturally fixed with a Sheppard or sparse Lagrange interpolant. A global GP interpolant can
be used by fixing the interpolation kernel. Note that by fixing the interpolation kernel, the GP interpolant no longer gives a valid
Nystréom approximation; however, this fixed interpolation scheme is useful for embedding prior information.
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5.3.5 Non-Gaussian Likelihoods

So far, only Gaussian likelihoods have been considered; however, this can be extended using
a latent Gaussian process, e.g., (Neal, 1997). We can maintain updates to be independent of
n using sparse latent variable updates that only update some of the latent variables between

each hyperparameter MCMC iteration. Such a scheme would proceed as follows:
1. Update kernel hyperparameters @ given the current latent variable values.

2. Update a subset of latent variables of size m using the current hyperparameters 8 and

the remaining n—n latent variables.
3. Return to step 1.

This approach allows the user to select any value of 1 <7 <n to be updated at each iteration,
although selecting a value that is too small could lead to slow mixing. Neal (1997) suggested
using n iterations of Gibbs sampling in step two of the preceding algorithm and so could be
used for sparse latent variable updates®. Titsias et al. (2008) generalized this approach for
other sampling schemes that are effective for more general likelihood structures, and discuss
other latent variable update schemes that can be used for sparse latent variable updates in
step two above (e.g., block-based Metropolis-Hastings). The complexity of step two in the
proceeding loop depends on the sampling scheme employed; however, a scheme can easily be
derived whose complexity is independent of n and scales in m with the same complexity as

the update in step one.

5.4 Experimental Studies

Algorithm 5.1 Summary of the approach outlined in section 5.2.1 to compute the Gaussian process log
marginal likelihood (or log evidence) and its derivatives with respect to all kernel hyperparameters with a per-
iteration complexity of O(m?). It is assumed that the prior precision has the diagonal structure S =diag(y~1),
where ye R, and that the algorithm has access to the following quantities that are precomputed before LML

iterations begin (see page 67): ylyeR, r= @TyeRm, and A =®T PR,

Input: Hyperparameters v€R' and 0?€R,, .
OLML(~,02) cR™ OLM

2
L(v,07) cR.
oy

0o?

Output: Log marginal likelihood LML(v,0%)€R and its derivatives
P=c%diag(y~!)+ AeR™*™
LML(v,0%) =—1072(yTy—rTP~'r),— tlog|P|—log|S|+ (n—m)logo? — Zlog(2) R (eq. (5.4))

Compute %WGR"I and aLM(I;%,(Z’JQ)GR using eq. (5.5).

o

This section empirically assesses the Gaussian process methods introduced in this chapter
to accelerate type-I inference. Algorithm 5.1 summarizes the approach outlined in section 5.2.1
to compute the Gaussian process log marginal likelihood (or log evidence) and its derivatives

with respect to all kernel hyperparameters with a per-iteration complexity of O(m?). Tt

4Neal (1997) suggested that the Gibbs sampler loop through the entire training set once or even more between hyperparameter
updates since, in the situation considered, the latent variable updates were far cheaper than the hyperparameter updates. In our
case, hyperparameter updates are of comparable expense.
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is also assumed that the prior precision has the diagonal structure S = diag(y~!), where
v € R’ These are the most expensive computations involved in performing type-I inference
with hybrid MCMC. Approaches to perform LML computations in O(m?) or O(m) use a
modification of algorithm 5.1 whose differences are discussed in section 5.2.2 and section 5.2.3,
respectively. A python implementation of these methods, along with several tutorials can be

found at https://github.com/treforevans/gp_grief.

5.4.1 One-Dimensional Visualization

« Training Data
— Exact Function
A 4 Inducing Points

- - ExactKernel| ¥
> i

(a) Data & m =10 inducing points. (b) Grid-structured eigenfunctions. (c) Run MCMC in O(m?®). Shown are
posterior samples of the kernel.

Figure 5.2: One-dimensional regression example demonstrating the GP-GRIEF type-I inference procedure in O(m3). The
posterior samples of the kernel demonstrate the flexibility of this parameterization.

We begin with a one-dimensional visualization showing the flexibility of a type-I inference
procedure using the re-weighted basis kernel and the O(m?) LML computations outlined in
section 5.2.1. We begin by generating a random dataset with n =50 points (shown in fig. 5.2a)
that is a sample from Gaussian process using the kernel identified by the black dashed line
in fig. 5.2¢, and corrupted by i.i.d. Gaussian noise. As basis functions for the re-weighted
basis kernel (eq. (5.1)) we use ® defined in eq. (4.2), and parameterize S as a diagonal matrix.
The basis functions are therefore approximate kernel eigenfunctions found using the GRIEF
approach of chapter 4, as was discussed in section 5.3.4. The GRIEF basis functions are
plotted in fig. 5.2b where m = 10. These basis functions were computed using the inducing
points whose locations are shown as black triangles in fig. 5.2a. We place an independent
inverse log-normal hyper-prior over the diagonal elements of s and a log-normal prior over

2. We marginalize {diag(S), o2} using Metropolis

the Gaussian process noise variance o
adjusted Langevin dynamics Markov chain Monte Carlo (MCMC) which uses gradient
information (Girolami and Calderhead, 2011). Beginning sampling at the prior mode, we
burn the first 1000 samples before running the Markov chain for 10000 iterations and thinning
every 50 iterations. Figure 5.2c¢ shows posterior samples of the re-weighted basis function
kernel where it is evident that the parameterization has a flexibility to explore kernels with a
wide range of effective lengthscales even though only m = 10 basis functions are employed and

the MCMC sampling approach is independent of the number of training observations.
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GP-GRIEF-II GP-GRIEF-I Yang et al. (2015)
Dataset n d Time RMSE Time RMSE RMSE
challenger 23 4 0 0.5564+0.277 0.178 0.519+0.261 0.63+0.26
fertility 100 9 0.001 0.172+0.055 0.66 0.166+0.051 0.21+0.05
slump 103 7 0 3.9721+1.891 0.566 3.470+1.712 4.72+2.42
automobile 159 25 0.007 0.145+0.057 0.604 0.1114+0.036 0.184+0.07
Servo 167 4 0 0.280+0.085 0.265 0.268+0.075 0.28+0.09
cancer 194 33 0.007 27.843+3.910 0.667 30.568+3.340 35+t4
hardware 209 7 0 0.408+0.046 0.637 0.402+0.045 0.43+0.04
yacht 308 6 0.001 0.170+0.083 0.595 0.120+0.070 0.16+0.11
autompg 392 7 0.001 2.607+0.356 0.594 2.563+0.369 2.63+0.38
housing 506 13 0.004 3.212+0.864 0.62 2.887+0.489 2.91+0.54
forest 517 12 0.001 1.386+0.14 0.621 1.384+0.139 1.394+0.16
stock 536 11 0.001 0.005+0.000 0.567 0.005+0.000 0.005+0.001
energy 768 8 0.002 0.4940.057 0.622 0.461+0.064 0.46+0.07
concrete 1030 8 0.008 5.232+0.723 0.57  5.156+0.766 4.95+0.77
solar 1066 10 0.003 0.786+0.198 0.628 0.809+0.193 0.83+0.20
wine 1599 11 0.012 0.483+0.052 0.583 0.477+0.047 0.47+0.08
skillcraft 3338 19 0.011 0.248+0.016 0.573 0.248+0.016 0.254+0.02
pumadyn 8192 32 0.156 0.20+0.00 0.645 0.212+0.004 0.20+0.00
elevators 16599 18 0.283 0.091+0.002 0.664 0.097+0.001 0.090+0.001
kin40k 40000 8 0.38  0.206+0.004 0.649 0.206+0.004 0.28+0.01
keggu 63608 27 3.642 0.118+0.003 0.704 0.134+0.005 0.12+0.00
3droad 434874 3 0.869 11.648+0.281 0.221 12.9664+0.077 10.91+0.05
electric 2049280 11  8.019 0.064+0.002 0.418 0.058+0.006 0.12+0.12
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Table 5.1: Mean and standard deviation of test error and average training time (including hyperparameter estimation or MCMC
sampling, in hours) from 10-fold cross validation (90% train, 10% test per fold) on UCI regression datasets.

5.4.2 UCI Regression Studies

We next assess performance on real-world regression datasets from the UCI repository. Note
that the setup of this study follows closely the setup of the studies in section 4.4.3. We
report the mean and standard deviation of the root-mean squared error (RMSE) from 10-fold

cross validation®.

Also presented is the mean training time per fold on a machine with
two EbH-2680 v3 processors. We use a squared-exponential kernel with automatic relevance
determination (SE-ARD) and we compare our test errors to those reported by Yang et al.
(2015) using type-1I inference on the same train-test splits. Yang et al. (2015) used an exact
GP with an SE-ARD kernel for datasets with n <2000, and Fastfood expansions were used to
approximate the SE-ARD kernel for the larger datasets (n>2000).

Before training, we initialize the base kernel hyperparameters, @, by maximizing the
marginal likelihood of an exact GP constructed on min(n, 1000) points randomly selected from
the dataset. We call our model GP-GRIEF-I which uses the kernel from eq. (5.1) using basis
functions ® defined in eq. (4.2), and parameterize S as a diagonal matrix. The basis functions
are therefore approximate kernel eigenfunctions found using the GRIEF approach of chapter 4,
as was discussed in section 5.3.4. The base kernel hyperparameters, 0, are fixed to the initialized
values such that the basis functions remain constant throughout LML iterations. We marginal-
ize {diag(S), 02} using Metropolis adjusted Langevin dynamics MCMC which uses gradient
information (Girolami and Calderhead, 2011). The training time includes MCMC sampling,

590% train, 10% test per fold. We use the same splits as Yang et al. (2015)
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which we run for 10000 iterations. We use independent log-normal priors with {mode, variance}
of {1, 100} for diag(S™'), and {02, 0.04} for the Gaussian process noise variance o, where o3 is
the initialized value. We begin sampling at the prior mode, burning the first 1000 samples and
thinning every 50 thereafter. For datasets with n > 10® we use the O(m) LML computations de-
scribed in section 5.2.3 and otherwise use the O(m?) approach outlined in section 5.2.1. For all
studies, we fix m =1000 and use the distribution of inducing points described in section 4.4.3.

Results are shown in table 5.1 where results from the GP-GRIEF-II model described in
section 4.4.3 are repeated here for comparison. It is firstly evident that both GP-GRIEF-I
and GP-GRIEF-II outperform the exact GP presented by Yang et al. (2015) on nearly every
small dataset (n <2000). In particular, GP-GRIEF-I performs extremely well on these small
datasets as we would expect since it uses a very flexible kernel and is robust to over-fitting as
a result of the principled type-I Bayesian approach employed. On larger datasets, where we
expect the hyperparameter posterior to be more peaked, we see that the type-II techniques
begin to be competitive. On these larger datasets, both GP-GRIEF techniques show compa-
rable test error to Yang et al. (2015) on all datasets but perform considerably better on kin40k
and the electric dataset with two-million training points. With respect to time, we note that
the GP-GRIEF-I model trained extremely rapidly considering a fully Bayesian approach was
taken; only 25 minutes were required for the two million point electric dataset even though

this size is prohibitive for most GP models taking a type-II empirical Bayes approach.

5.5 Conclusions

The new kernel parameterization technique has been outlined along with promising initial
results on large real-world datasets where we demonstrated Gaussian process evidence
computations in as little as O(m) time with O(m) storage. This fast training enables type-I
Bayesian inference to remain computationally attractive even for very large datasets as we
had shown in our studies. We also provided an asymptotic result showing that any stationary
kernel can be recovered when using the developed kernel. This is a potentially promising

direction that should be explored further in future work.



Chapter 6

Scaling (Gaussian Processes

using Variational Inference

In this chapter we introduce a stochastic variational inference procedure for training scalable
Gaussian process (GP) models whose per-iteration complexity is independent of both the
number of training points, n, and the number of basis functions used in the kernel approxima-
tion, m. Our central contributions include an unbiased stochastic estimator of the evidence
lower bound (ELBO) for a Gaussian likelihood, as well as a stochastic estimator that lower
bounds the ELBO for several other likelihoods such as Laplace and logistic. Independence of
the stochastic optimization update complexity on n and m enables inference on huge datasets
using large capacity GP models. We demonstrate accurate inference on large classification
and regression datasets using GPs and relevance vector machines with up to m = 107 basis

functions. The following paper includes the contents of this chapter:

T. W. Evans and P. B. Nair (2020). “Quadruply Stochastic Gaussian Processes”.
In: arXiv preprint arXiv:2006.03015

6.1 Introduction

As discussed in chapter 2, Gaussian process (GP) modelling is a powerful Bayesian approach
for classification and regression; however, it is restricted to modestly sized datasets since
training and inference require O(n?) time and O(n?) storage, where n is the number of training
observations. This has motivated the development of sparse GP methods that use a small
number of basis functions, m («n), to reduce time and memory requirements to O(m?n+m?)
and O(mn+m?), respectively (e.g., Lazaro-Gredilla et al. (2010), Smola and Bartlett (2001),
Snelson and Ghahramani (2006), and Titsias (2009)). However, such techniques perform
poorly if too few inducing points are used, and computational savings are lost on complex
datasets that require m to be large.

Wilson and Nickisch (2015) approached these model capacity concerns by exploiting

the structure of inducing points placed on a grid, allowing for m > n while reducing com-
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putational demands over an exact GP. This inducing point structure enables performance
gains in low dimensions, however, time and storage complexities scale exponentially with the
dataset dimensionality, rendering the technique intractable for general learning problems
unless a dimensionality reduction procedure is applied. Comparatively, the “variational free
energy” (VFE) Gaussian process approximation (Titsias, 2009) is a more general technique
that makes efficient use of inducing points by optimizing them through a variational objec-
tive in an attempt to more accurately capture the true posterior. Many extensions have
been made to this approach including a stochastic training procedure that enables dataset
sub-sampling (Hensman et al., 2013), we refer to this approach as SVGP. This allows the
technique to be extended to large datasets; however, it is inherently restricted in the capacity
of the model since it incurs a cost of O(m?) per iteration.

In this work, we address these concerns by introducing a novel stochastic variational
inference technique whose per-iteration complexity is O(1) (i.e., independent of both n
and m), allowing very powerful models to be constructed on large datasets. Note that by
per-iteration complexity, we refer to computational and storage demands at each iteration
of stochastic gradient descent (SGD) and this should not be confused with the expected
complexity to converge to a given accuracy, which we do not discuss. Low per-iteration
complexity is extremely valuable from a practical perspective since it does not require limiting
model capacity or GP approximation accuracy based upon available resources (e.g., GPU
memory constraints). We compare the per-iteration complexity of the proposed approach,

QSGP, to prior work in table 6.1. Below is a summary of our main contributions

o For regression, an unbiased SGD scheme is developed for estimating the variational

parameters whose per-iteration complexity is independent of n and m;

« For classification, we develop a SGD scheme that maximizes a lower bound of the ELBO

with a per-iteration complexity that is also independent of n and m;

e A novel control variate is introduced to reduce the variance of the stochastic gradient

approximations without affecting computational complexity; and

o We demonstrate scalability by training powerful models on large classification and

regression datasets, using up to m =107 basis functions.

The first two points comprise novel Monte Carlo estimators for the evidence lower
bound (ELBO) with a four-level stochastic sampling approach: we sub-sample the n
training examples once, and sub-sample the m basis functions three times. Because of
these four levels of stochasticity, we call the approach “quadruply stochastic Gaussian
processes” (QSGP). Section 6.2 describes QSGP for regression problems, whereas section 6.3
outlines QSGP for other likelihoods, including logistic likelihoods for classification. We
conclude with numerical studies in section 6.4, but to begin we provide a brief background on

Gaussian processes and outline the matrix notations used in this chapter.
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Per-iteration Computation  Per-iteration Storage

Exact GP O(n?) O(n?)

VFE (Titsias, 2009) O(nm?4+m?) O(nm-+m?)
SVGP (Hensman et al., 2013)  O(m?) O(m?)
QSGP 0(1) 0(1)

Table 6.1: Per-iteration complexities for hyper- or variational-parameter optimization. Storage refers to the working memory
requirements per SGD iteration (e.g., GPU memory requirements).

Notation We use the notations h; ., h; and h;; to denote the 7th row, ith column and ijth
element of the matrix H, respectively. Given the sets of indices u and v, H,, denotes a

matrix whose ijth element is given by A,

Background on Gaussian Processes Gaussian processes (GPs) provide non-parametric prior
distributions over the latent function that generated a training dataset. It is typically assumed
that the dataset is corrupted by independent Gaussian noise with variance o2 >0 and that the
latent function is drawn from a Gaussian process with zero mean and covariance determined
by the kernel k:RY x R? — R. We consider a regression problem where X = {x; e R4}" | and
y € R"™ denote the set of n training point input locations and responses, respectively. Inference
can be carried out at the test point, x, € R?, giving the following posterior distribution of the

prediction y,eR
Pr(y*\X,x*)z./\f(y* ’ k(X*>T<KX,X+UzIn)7IY7 /{Z(X*,X*)—k(X*)T(KX’X—i—0’2In)71k(x*)),

where Kx x € R"*" is the training dataset kernel covariance matrix whose ijth element is
k(x;,x;), and k(x,)€R" is the cross-covariance matrix between test point x, and the training
dataset such that the ith element is k(x;,x4). For a more thorough introduction to GPs,

please see section 2.2.

6.2 Unbiased ELBO Estimator in O(1) for Regression

In this section we again consider a sparse Gaussian process model using the finite basis
function kernel approximation k(x,z) ~ ¢(x)"S '¢(z) introduced earlier in section 2.4.1.
This kernel directly specifies a function space prior; however, we can also consider a weight
space perspective to describe the following equivalent model: consider a generalized linear
model of the form f(x)=>7" w;®;(x), where the weight space prior is Pr(w) =N (w|0, S71),
and the likelihood is Pr(y|X,w) = N (y|®w, ¢°L,). This connection was discussed in detail
in section 2.2.1. Recall that in our notation, S € R™*™ is an SPD weight prior precision
matrix, ® € R™*™, where ¢;; = ¢;(x;), contains the evaluations of all m basis functions at all
n training points, and weR™ are the weights. Clearly some choices of S and ® will result in
better kernel approximations than others but we defer discussion about these attributes until

section 6.2.3 and will continue our presentation assuming arbitrary choices.
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As a result of conjugacy of the Gaussian prior, the posterior of the discussed model is also
Gaussian and can be directly computed in closed form in O(m?*n 4+ m?) (see section 2.2.1).
However, in this chapter we choose to instead use variational inference to compute the
posterior which we show allows for stochastic inference procedures to scale to larger values
of m and n. The ability to handle larger n means we can work with larger datasets, while
larger m means a better kernel approximation and subsequently a better GP approximation.
We note that for the remainder of this chapter, we focus on the weight space perspective and
tailor the following overview of variational inference to this model structure.

Variational inference is a method that can approximate probability densities in Bayesian
statistics (Blei et al., 2017; Hoffman et al., 2013; Jordan et al., 1999; Kucukelbir et al., 2017;
Ranganath et al., 2014; Wainwright and Jordan, 2008). Focusing on the generalized linear
model described previously, we need to compute the posterior Pr(w|y,X) which is nominally
posed as an integration problem. Variational inference turns this task into an optimization
problem. By introducing a family of probability distributions ¢(w) parameterized by some vari-
ational parameters, we minimize the Kullback-Leibler divergence to the exact posterior. This

equates to maximization of the evidence lower bound (ELBO) which we can write as follows:
ELBO =E(w)[logPr(w)+logPr(y|X,w)—logg(w)] <logPr(y|X), (6.1)

where the equality holds if Pr(w|y,X) = ¢(w). Computation of the ELBO generally requires
analytically intractable computations; however, Challis and Barber (2013) show that all terms
of eq. (6.1) can be written in closed form as follows for the previously introduced generalized
linear model if we choose the Gaussian variational distribution ¢(w) = N (w|u,X), where
peR™ and e R™™

1({1
ELBO = ~3 [; (—2yT<I>p,+sum<(<I>u)2)> +uTSu] (6.2)
ﬁ:(%)
1[ 1 , 1 ) b ot
-3 —28um<(<I>C) >+tr(SE)—log’E‘ —§[log‘27rS | —mlog(2m) —m+nlog(2mo )—i—ya—gy],
o
L‘,;((E) ﬁconst

where ()2 refers to the elementwise square of the argument, and we parameterize the varia-
tional covariance using the lower triangular Cholesky factorization C € R™*™ with positive
values on the diagonal such that X = CC”. While eq. (6.1) can be maximized with respect
to {u, C} using deterministic gradient based optimization at O(m?+nm?) computations per
iteration, the main contribution of this chapter is a novel stochastic training procedure that
reduces this complexity to O(1) computations per iteration. That is, we demonstrate how to
compute an unbiased estimate of the ELBO (and its gradient) in a time that is independent
of both the quantity of training data n, and the number of basis functions m. Leveraging this

estimator allows fast iterations of stochastic gradient descent (SGD), the workhorse of many
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large-scale machine learning optimization problems.

We first observe that when the prior is fixed, the ELBO in eq. (6.2) is additively separable
in the variational mean parameters (p) and variational covariance parameters (C). This
separability enables these parameters to be estimated by solving two decoupled sub-problems

which we analyze separately.
6.2.1 Learning the Variational Mean

We begin with the following result which provides a novel estimator for £, (p) from eq. (6.2).

Theorem 6.1. An unbiased estimator whose evaluation has a complexity independent of n

and m can be written as

nm

nm 2
L)~ =y Paats+ azﬁfnz“T‘I’T By ip5+ 2o Syt

where 1, JeR™ both contain indices sampled uniformly from {1,2,....m}, LeR" contains indices

sampled uniformly from {1,2,....n}, and m and n are the number of Monte Carlo samples.

Proof. The main idea of the proof is to interpret matrix operations in £, as expectations,
allowing us to write Monte Carlo estimators of those expectations to allow mini-batch
sampling over the rows and columns of all matrices. We begin by re-writing £, in eq. (6.2)

purely in terms of matrix products as

1
Lo(p)=— (—2yT@u+sum<(@u)2)> +u"Sp=—2y ®u+Hp " Opu+p" Sp.

We then expand the matrix products to give a sum over m
1
p=mp — (= 2" Gutrit o @7 i+ s,
i=1

and interpreting this as an expectation, where p,,(i) = m™', i € {1,2,...,m} is a categorical

probability distribution gives
L(n)=mE;,, <— 2y i+ Sn" @ i+ MTSM‘> :

Finally, we write a Monte Carlo estimator for this expectation to give the following unbiased

estimator

Lu(w)~ =30y @ st s p 1@ g+ 2 'S o

The remainder of the proof follows from repeating these successive steps; (i) expanding matrix

operations, (ii) interpreting the (expanded) matrix operations as expectations, and (iii) writing
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Monte Carlo estimators for these expectations. Proceeding in this manner completes the proof,
Expanding: L,(p)~ Ti?g T, iMitm Z <,7Z,Lz Mj¢?¢;j#i+%ﬂjsj,iﬂi>v

Expectations:  L,(p)~ =325y @ zps+m Ejop, (#ujcﬁ%.;u#%uﬁﬁuz),

Monte Carlo: ‘C“(u’) ~ _TTQz_;ny P, ST 7717302 “;Q)?;jq):,iui m2 :u‘ Sj iHi
. "1 o o L
Expanding: 2 i <_ YDy i T Rz ¢Zj¢e,il~bi> + 3245 S0k,

Expectations: L, (pn)~n Ep,, (— %ygqbe i+ m";—iu:fgszd)e ;u:) + g—iufsﬁm,

Monte Carlo: Eu(y,)m—qfﬁ?yeéaul—kﬁwﬁw<I> @z;pq mQ/,LTS~;y,l

]

To learn p, this estimator can be differentiated to give an (unbiased) gradient estimate of £,
with respect to pt. These gradient estimates can then be used to perform SGD, and since the gra-
dient estimator is unbiased and £,, is convex in p, the process will converge to the unique mini-
mizer of £,, provided an appropriate learning rate schedule is used (Robbins and Monro, 1951).

Using the stochastic estimate of £,, in theorem 6.1 is highly advantageous for SGD since
each stochastic gradient evaluation no longer depends on n or m. This is a significant
achievement for large problems since the complexity of evaluating this loss has decreased from
O(nm+m?) — O(fim+m?), where i and m can be chosen to be arbitrarily small (e.g., small

enough to store all matrices in GPU memory).

6.2.2 Learning the Variational Covariance

Having shown that the variational mean parameters can be found using an SGD procedure
whose per-iteration complexity is independent of m and n, the following theorem provides a

similar result for the variational covariance parameters C.

Theorem 6.2. An unbiased estimator whose evaluation has a complexity independent of n

and m can be written as follows:

C)%%Z[ nm? T <I>T P;-c: 2c~ S::c;, —2 logcw],

2mm2 © L,i 17“ Fana R g K3
rer

where TeR™ contains indices sampled uniformly from {1,2,....m}.

Proof. This proof proceeds similarly to that of theorem 6.1 where the main idea is to interpret
matrix operations in Ly, as expectations, allowing us to write Monte Carlo estimators of those

expectations to allow mini-batch sampling over the rows and columns of all matrices. We



CHAPTER 6. SCALING GAUSSIAN PROCESSES USING VARIATIONAL INFERENCE 87

begin by re-writing Ly, in eq. (6.2) purely in terms of matrix products
1 m
Ls(X)= ;sum((@Cf) ~|—tr(SE —log‘E = Z L@ ®c, +c! Sc, —2loge,,,

interpreting the summation as an expectation, we have
Ls(X)=mE,_,, ( T<I>T<I>cr+cTScT—2logcr,n>,

where p,, (1) =m™',1€{1,2,...,m} is a categorical probability distribution, and writing a Monte

Carlo estimator for this expectation gives the following unbiased estimator

Ls(Z)~Z) = Lcld"®c, +c!'Sc, —2loge,,.

TET

We now proceed in a manner identically to the proof of theorem 6.1 where we repeat three suc-
cessive steps; (i) ezpanding matrix operations in Ly, (ii) interpreting these (expanded) matrix
operations as expectations, and (iii) writing Monte Carlo estimators for these expectations.

Iterating,
Expanding: Lx(X)~ %Zm Z% <§cf<I>T¢ici,r +cfsici7r> —2logc,,
Expectations: Lx(3)~ %Zm Eip., (02 cl oo, CirtClsici r) —2loge,,

Monte Carlo: L’E(E)mgzi TeTP <c: +chS -c; —2loge,.,,

ll'f" 117"

Expanding: EE(Z)%%Em Ei(grcﬂq’) P ;¢ + 508 5C 1r> 2logc,,,

Expectations: EE(E)~%Zm]Ej~pm< JrcﬁT(I) iCi, T 5 CrS;iC ”,) 2logc,y,

ll'f'

Monte Carlo:  Lx(3)~2) Hesc! ®L® 505, +25¢] S55¢;, —2loge,

o2z € 3 iitir

Expanding: Ls()~ 2 D1 (Hazel 6156501, ) + Zrek Sjic;, —2logen,

5,

Expectations: Lx(X)~% n]Eg~pn<UTm2 ¢e3¢61 1 ) + I CJTTSJIC;T—210ch,

Monte Carlo: Lg(X)~2Y 2 el <I> <I>~ :C; + m2 ¢! S::c: —2loge,,.

m o2nm2 C Livir 3o dir

]

This estimator provides significant savings over the exact computation of Ly in eq. (6.2)

since the complexity has decreased from O(nm? +m?) — O(nm? + m?). Similarly to the

L,, estimator, this estimator can be differentiated to give an (unbiased) gradient estimate of
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Ly, with respect to C that can be used for SGD. This estimator makes use of four stochastic
estimates: three over the m basis functions, and one over the n training examples. Hence we call
this estimator “quadruply stochastic” and the subsequent GP a quadruply stochastic Gaussian
process (QSGP). As mentioned in the theorem statement, the cost of evaluating this estimator
is independent of n and m, allowing for highly flexible models to be trained on huge datasets.

In contrast to the proposed approach, modern stochastic variational inference techniques
commonly make use of the same mini-batch sampling procedure over the n training points
that is identified here, and a second stochastic estimator is used which samples the variational
distribution (Hoffman et al., 2013). This traditional stochastic variational inference approach
does eliminate the per-iteration dependence on n; however, even just the act of sampling the
variational distribution is at least an O(m) operation per-iteration before even estimating the
ELBO. In our approach, we perform three levels of basis function sub-sampling that enables
the cost per iteration to be independent of m. To the best of our knowledge, this is the first
time in the literature an observation has been made that it is possible to perform mini-batch
sampling over basis functions while carrying out stochastic variational inference.

One remaining concern with theorem 6.2 as presented is that there can be as many as
O(m?) variational covariance parameters in C which can be expensive to store if m is large.
Instead, one could consider the lower triangular C matrix to have a sparse “chevron” pattern
depicted as C = D, where the colour indicates non-zero elements. This parameterization
allows important posterior correlations between basis functions to be captured and since only
the first few columns of C are dense, it ensures that the number of variational parameters
scale as O(m). Additionally, the computations in theorem 6.2 can be substantially reduced by
exploiting the sparsity patterns of this chevron structure for C. While this parameterization
is not invariant to permutations of basis function indexing, Challis and Barber (2013)
demonstrated that it performs comparably to more complex parameterizations. Also, no
matter whether a full or chevron parameterization is employed, Ly, remains convex (Challis
and Barber, 2013) which again ensures that an SGD procedure will converge to the unique
minimizer of Ly, provided an appropriate learning rate schedule is used. To further reduce
the computational burden, the following result demonstrates that ¢, from the diagonalized

columns of the chevron Cholesky structure can be computed in closed form.

Proposition 6.1. Given the parameterization c, = e,c,., where ;e R™ is the ith unit vector,

maximizing the ELBO with respect to c,,. gives

o2

¢$¢r +0%5,, '

C’!”!’ -

Proof. The optimal ¢, minimizes Ly (C). Therefore, writing the terms of Lx(C) from eq. (6.2)
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that depend on c, gives the problem statement

1

argmin Ly (C) = argmin—2cf<I>T<I>cT +c!'Sc, —2logc, .
Cr Cr g

Assuming ¢, = e,c,,, the solution of the preceding optimization problem can be obtained by

solving the one-dimensional minimization problem

min <$¢f¢r + 8m~> 2 —2logc,,,

Crr

setting the derivative with respect to ¢, to zero and solving for ¢, completes the proof,
o2
Crp = ﬁ .
¢, 075,

6.2.3 Empirical Bayes

We have so far described how to learn the variational mean and covariance parameters p
and C while keeping the prior constant. Practitioners often choose to modify the prior by
maximizing the marginal likelihood (or evidence) with respect to a set of hyperparameters (see
section 2.3.3). This is referred to as type-II inference or empirical Bayes and we discuss how
this can be performed with the QSGP technique to estimate hyperparameters in the kernel
k, which in turn affect S, and ®. We will perform empirical Bayes by maximizing the ELBO
in eq. (6.1), which is of course a biased surrogate for (i.e., a lower bound of) the log-marginal
likelihood; however, it is a widely used approach that performs well in practice (Titsias,
2009). Referring to the ELBO notation in eq. (6.2), we have already shown how to efficiently
estimate £, and Ly; however, the term L.ons also depends on the GP prior so it must be
considered as well. The challenging term in Lo from eq. (6.2) is log ‘S‘ which can be
computed cheaply only in special cases (e.g., if S is diagonal) but is expensive to compute
in the general case. Some kernels that natively' admit a diagonal S matrix include random
Fourier feature kernel approximations (section 5.3.1), grid-structured eigenfunctions kernel
approximations (chapter 4), and kernels used for relevance vector machine (section 5.3.2)

which all allow empirical Bayes to be easily performed using the following estimator.

Proposition 6.2. Assuming a diagonal S, an unbiased estimator whose evaluation complexity

is independent of n and m can be written as follows:

L const X —%Zlogsu- —m+n log(2mo?) + #y%yz.

i€l

1Any kernel can be written to have a diagonal S using a linear transformation of features; however, performing this
transformation would cost O(m3) in general.
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Proof. Re-writing Leons; from eq. (6.2) assuming that S is diagonal

Leonst = log‘27rS_1‘—m log(27) —m+n log(2ma?) +$yTy,
=mlog(2) —Zlogsn- —m log(27) —m-+n log(2rmo?)+ 0—12ny
i=1 (=1
Cancelling terms and interpreting the sums as expectations allows us to write the following

unbiased Monte Carlo estimator to complete the proof

Leonst & —%Zlogsii —m+n log(2mo?)+ #y%yz.

i€l
O]

We now have stochastic estimators for each term of the ELBO in eq. (6.2) and have
therefore demonstrated how an unbiased approximator of the ELBO can be performed in
O(1). While proposition 6.2 requires a diagonal S, this estimator only needs to be included
when empirical Bayes is being performed. In the fully Bayesian case where the prior is fixed,
only theorems 6.1 and 6.2 need to be considered, and these both assume a general, dense S.
To extend the result in proposition 6.2 to the case of a general S, it may be possible to use a
“Russian roulette” estimator following Chen et al. (2019) to provide a stochastic estimate of

log|S|; however, this is left for future work.

6.2.4 Control Variates

We discuss here how to reduce the variance of the Monte Carlo estimators introduced in
theorems 6.1 and 6.2 and proposition 6.2. Variance reduction is an important consideration
in practice since it affects the rate of convergence of stochastic gradient descent (e.g., Gower
et al. (2019)). We focus on techniques that will reduce variance while remaining unbiased.
A classic technique to reduce variance of Monte Carlo estimators is to introduce a control

variate (Owen, 2013). We consider reducing the variance of the term Ugg; ujT

@3 ;P35 in
theorem 6.1 by adding the following terms to the £, estimator
nm? THT n

o2nm? IJ’_] (I)p,j(I)p,il‘l’i—i_m“Tq)g,:q)P#”’ (63)

where the negative control variate is the first term (which is stochastic) and the second term
is the expectation of the control variate (which is deterministic). The fixed set pe R™ contains
indices of n support points that are randomly sub-sampled from the training set before SGD
iterations begin. This control variate can reduce variance of the Monte Carlo estimator if
there is correlation between the elements of %@;@W and ®7®. We speculate that there
would be correlation since the control variate uses an unbiased low-rank approximation of
&7 ®. Additionally, it can be easily seen that the expectation of eq. (6.3) is zero, therefore

adding this to the theorem 6.1 estimator does not introduce any bias. Equation (6.3) could



CHAPTER 6. SCALING GAUSSIAN PROCESSES USING VARIATIONAL INFERENCE 91

also be scaled by a control variate coefficient to further reduce variance (Owen, 2013). We
just consider a control variate coefficient of unity in this work.

We can choose 1 « n such that the first term in eq. (6.3) can be computed cheaply; however,
computation of the second term (the control variate expectation) evidently requires O(m)
computations. The following result demonstrates how this second term can be computed in
O(1) per SGD iteration.

Proposition 6.3. The ezpected value of the control variate in eq. (6.3) can be computed at
iteration t with a complexity independent of n and m as follows:

n NT@g,;(pp,:M:Ug_fa(t)Ta(t)a

o2n n
where a) = att=1) 4 @i (1i; — IL;(EI)) eR”, pu=Y e R™ is the value of u at the end of
iteration t — 1, al® = <I>p7:p(0), i 3 are all the variables being updated at the current SGD
: has been updated at the end of iteration t.

iteration, and a®) is saved once i

This result can be easily proven by observing that a1 = &, . p=Y_ Clearly the cost of
updating a®) at the end of iteration ¢ requires just O(nm) time, and evidently if optimization
begins at u® = 0, then we initialize a® = 0. The requirement for sparse update directions
can be met by simply choosing an appropriate optimizer such as regular gradient descent, or
AdaGrad (Duchi et al., 2011). Computation of unbiased, sparse gradients of proposition 6.3
is detailed in appendix D.1.1.

Finally, we note that the control variate in eq. (6.3) can also be directly used in theorem 6.2
by simply replacing p with c,. Additionally, we can derive control variates for the other terms

in theorems 6.1 and 6.2 which we discuss in appendix D.1.2.

6.3 ELBO Lower Bound Estimator in O(1) for Classification

Previously we assumed that the likelihood Pr(y|X,w) is Gaussian, and now we generalize our
results for other likelihoods so that different types of learning problems can be addressed (e.g.,
classification). Specifically, we aim to develop a variational bound that can be estimated
in O(1) for a wide class of likelihoods. For many likelihoods of interest, the second term in

eq. (6.1) can be written as
IEq(w) [10gPI‘(y|X,W>] :ZEq(w) [logg€(¢€,:w)] ) (64)
=1

where g, : R — R is referred to as a site projection (Challis and Barber, 2013). Examples of
site projections for different likelihoods are provided in appendix D.3. Additionally, since we

assume ¢(w) is Gaussian, we can re-write eq. (6.4) as a sum of one-dimensional expectations
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as follows (Barber and Bishop, 1998; Challis and Barber, 2013; Kuss and Rasmussen, 2005):

n

B 0Py X)) = B o) | 108ge (Be.11+ 26, 301) . (6.5)

which can be easily approximated using quadrature methods when the integral is not ana-
lytically tractable. The following result demonstrates how this likelihood expectation can be
estimated in O(1).

Theorem 6.3. Assuming the site projection g, is log-concave, the following inequality holds:

E (o) [log Pr(y|X,w)] > 2 E [Zlogg@<N%uﬁg—izqszjcjjc{;(ﬁfj)],

Lel
where the expectation on the right-hand side is taken over i, j, reR™ LeR", and z~N(0,1).

Proof. Re-writing eq. (6.5),

n

Eqw) [10gPr y|X, W Z N (2]0,1) [10gge(¢g 2y, E¢€ )]

and writing the expression inside the site projections g, as expectations gives

3

E q(w) [logPr Y\X W Z (2]0,1) [loggg (Ei,j,r~Pm [m¢f,iﬂi +m32¢e,j0j,rci,r¢e,i]) ] )

where p,(i)=a"", i€{1,2,...,a} is a categorical probability distribution. We can also write the

sum over n as an expectation

Eq(w) [logPr(y\X,W)] =n IE:N(z|0,1), O~pn [loggg (Ei,j,r~pm [m@,mi +m32¢e,j0j,rci,r¢£,i] )] .

Writing the expectations over mini-batches of size m, n for the distributions over p,, and p,,

respectively, gives
n m m3
E(w)[logPr(y|X,w)] =2 Enrz10,1), 2~pi [Zlogge <Ei,j,f~~pm |25+ 252 ¢z,jcj,fC§T,f¢Zi]> ] ;
1

where p? is an b-dimensional distribution with each dimension i.i.d. according to p,. Finally,

assuming that g, is log-concave, we apply Jensen’s inequality to complete the proof

Eq(w)[108Pr(y[X,W)] = £ Eprsi0.1), ompr, 1.6 [ZIOgge( by iti+ 2 20,3C;:CLL b )]
(el

]

Note that we say f(z) is log-concave if log f(z) is concave in x. This result is clearly more

general than the results presented in section 6.2 which were restricted to a Gaussian likelihood.
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In fact, several commonly used likelihoods admit log-concave site projections including
Gaussian likelihoods, Laplace likelihoods (commonly used for robust regression), and logistic
likelihoods (commonly used for classification). For Gaussian and Laplace likelihoods, the
expectation over z in theorem 6.3 can be computed analytically but for a logistic likelihood
it must be approximated numerically, ideally using quadrature methods (Challis and Barber,
2013). Additionally, by extending the observations of Challis and Barber (2013) it can be
shown that the ELBO approximation remains concave in the variational parameterizations
discussed when the estimator in theorem 6.3 is employed. Therefore we can be sure that an
SGD procedure will converge to the unique maximizer of the ELBO lower bound provided an
appropriate learning rate schedule is used.

As an interesting side note, maximization of the lower bound in theorem 6.3 with 3 =0
is identical to a maximum likelihood learning procedure using dropout (Srivastava et al.,
2014) with a dropout rate of %ﬁl Therefore, it is evident that the dropout objective lower
bounds the log-likelihood when applied to linear models (or the final layer of a neural network)
when using a likelihood with log-concave site projections. As a result, dropout can achieve
regularization through this biasing of its original objective.

Optimizing the lower bound of the ELBO in theorem 6.3 does introduce bias into the
inference procedure, and it can be shown that the bias depends on the variance of the estimator
over 1,j, and ¥. To see this, consider an extreme example where we set A = m such that
we perform computations with the full batch. In this case, the estimator over i,j,f‘ has zero
variance, and the equality in theorem 6.3 holds. Evidently, the bias decreases as m increases
and is eliminated when m =m.

Another point of consideration is that the bias of the result in theorem 6.3 reduces as the
curvature of the log site projection logg, decreases (with the bias being eliminated when logg,
is linear). This result is a property of Jensen’s inequality (which was used to prove theorem 6.3)
and has implications on the choice of likelihood used. For example, the form of logg, for Gaus-
sian, Laplacian, and Logistic likelihoods are (shifted and scaled) quadratic, absolute value,
and softplus functions, respectively (we provide the specific forms of these in appendix D.3).
Empirically we find that the bias is small with the Laplace and Logistic likelihoods which would
be expected since both the absolute value and softplus functions are effectively piecewise lin-
ear (the absolute value function being exactly so). Conversely, a quadratic function generally
behaves linearly nowhere, and we find that the estimator in theorem 6.3 exhibits high bias when
applied to a Gaussian likelihood. Of course, the estimators in section 6.2 should instead be ap-

plied when using a Gaussian likelihood since they give an unbiased approximation of the ELBO.
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6.4 Numerical Studies

6.4.1 Classification Stress Testing

We consider here a binary classification problem with n = 60000 where we predict whether
MNIST digits are odd or even integers. For this problem, we consider random Fourier features
to approximate the isotropic exponentiated quadratic kernel shown in eq. (2.28) (Lazaro-
Gredilla et al., 2010; Rahimi and Recht, 2007). Random Fourier features (introduced in
section 5.3.1) are attractive since they natively admit a diagonal S matrix which allows
empirical Bayes to be easily performed, and the features are randomly generated rather than
data dependent, so the dataset does not need to be stored after training. Further, storing
the random features can be extremely cheap since we can just save the random seeds and
regenerate them as needed (Yan et al., 2015).

To perform inference on this classification problem, we use the stochastic ELBO lower
bound estimator in theorem 6.3 with a logistic likelihood, 101 quadrature points for the
integral over z, m = 10% random Fourier features, and mini-batch sizes of m = 20000 and
n=100. We learn a mean-field variational distribution (i.e., we choose a diagonal structure
for C) while simultaneously performing empirical Bayes to estimate the kernel lengthscale
and variance. The inference procedure on this huge model was performed in just 11.1 minutes
on a machine with a NVIDIA Quadro M5000 GPU, and considering the predictive posterior
median, we achieved a hold-out accuracy of 97.85% and a mean negative-log-probability of
0.068 on the test set?. We note that this improves upon the benchmark set by Hensman et al.
(2015) when approximating the same kernel using SVGP where they achieved an accuracy
and mean negative-log-probability of 97.8% and 0.069, respectively.

To further push the capabilities of the proposed QSGP inference approach, using the same
experimental setup but with m = 107 further decreased the mean negative-log-probability to
0.063 on the test set. It is promising that accurate inference can be performed while sampling
only % =0.2% of the basis functions at each SGD iteration. This stress test also demonstrates
our observation that once m is sufficiently large, increasing m does not appear to effect the
bias in theorem 6.3, nor does it seem to greatly effect the gradient variance. Therefore, we find
it advisable to choose m as high as possible, subject to practical constraints. We emphasize
that such a recommendation is not possible with existing models which scale poorly in m.
For instance, the cost of each SGD iteration is O(m?) for SVGP compared to O(1) for the
proposed QSGP approach.

6.4.2 Control Variate Studies

In this section we assess the control variate outlined in eq. (6.3) and proposition 6.3. To do this,

Oﬁg};g u{@{j@z’gu; from theorem 6.1

we compare the variance of the Monte Carlo estimator

2To put the scale of this problem into perspective, at each iteration of a deterministic solver, a matrix of size 480 Gb would
need to be generated at each iteration (assuming double precision floating point values).
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Figure 6.1: Effect of control variate rank 7 on the Monte Carlo variance of the objective (,%HT ®7T &1, and the averaged estimator
gradient variance with respect to p. Results are normalized.

both with and without the control variate. We compare the variance of both the value of this
Monte Carlo objective as well as the gradient of the estimator with respect to p. For the study,
we consider the king 0k dataset (n = 40000, d = 8) from the UCI repository, with m = 10000
random Fourier features to approximate the same kernel used at initialization of the regression
studies of the following section. We also set pt to be a sample from the prior, i.e., u~AN(0,S™),
and we use m =n = 500. Figure 6.1 plots both the variance of the objective, as well as the
variance of its gradient with respect to u, averaged over all elements. These variance values
are plotted with respect to the rank of the control variate used in the Monte Carlo estimator, 7.
For each n, the estimator is evaluated 1000 times to obtain the variance. Both the objective
and gradient variance are normalized with respect to the variance at n =0 where no control
variate is used. The results in fig. 6.1 show a rapid decrease in both objective and gradient
variance, even with a small control variate rank. It is promising that even though n = 40000,
when the control variate rank is just 7~ 300 the variance has already decreased by an order of
magnitude. This reduced gradient variance accelerates the convergence of SGD (e.g., Gower et

al. (2019)). We will assess the SGD convergence benefits of the control variate in section 6.4.4.

6.4.3 Regression Studies with Type-1I Inference

We now consider large regression datasets from the UCI repository using the proposed QSGP
inference procedure. We use a chevron Cholesky variational covariance parameterization,
use random Fourier features to approximate the exponentiated quadratic kernel (eq. (2.28))
with automatic relevance determination, and we perform empirical Bayes to estimate kernel

2 simultaneously with the variational

hyperparameters and the likelihood noise variance o
parameters. The results in table 6.2 report the mean and standard deviation of the root
mean squared error (RMSE) over five test-train splits (90% train, 10% test per split). Also
presented is the mean negative log probability (MNLP) of the predictive posterior on the
test data in the first split. The best MNLP value of each row is in boldface whereas the best

RMSE value is only in boldface if the difference is statistically significant (if the means differ
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by more than three standard deviations). QSGP-# denotes a quadruply stochastic Gaussian
process model where the first # columns of C have a dense lower triangle (note that QSGP-0
is a mean-field model with a diagonal C). For all QSGP models, we consider m = 10° basis
functions and mini-batch sizes of m = 10000 and 7. =500. We used the control Variate outlined
in proposition 6.3 with a control variate rank of n = 500 for both the W“ <I> <I>z i
term in theorem 6.1, and the 2~~2c <I>T (I)Z i€, terms in theorem 6.2 for each dense lower
triangular column in C. Therefore, the QSGP 100 model used control variates for 101 terms
in its ELBO estimator, for example.

For the inference procedure we also used an AdaGrad optimizer (Duchi et al., 2011) for
the variational parameters with an initial learning rate of 0.1, an Adam optimizer (Kingma
and Ba, 2015) for the hyperparameters with an initial learning rate of 1075, and we decay
both these learning rates exponentially over iterations. We run these optimization procedures
for 105 iterations in total and following Hensman et al. (2015) we find it helpful to freeze
the hyperparameters for the first 10* iterations until the variational parameters find a
tighter ELBO. We also compare to stochastic variational Gaussian processes (SVGP) using
GPFlow (Hensman et al., 2015; Matthews et al., 2017) with 512 inducing points whose
locations are learned along with model hyperparameters. For all models, 0% and all kernel
hyperparameters are initialized to the same values found by performing empirical Bayes with
an exact GP constructed on 1000 points randomly selected from the dataset. All models were
trained on a machine with one GeForce GTX 980 Ti GPU where the maximum training time
was 2.1 hours per train-test split for the QSGP-100 model trained on the ctslice dataset.

Comparing the MNLP values between the SVGP and QSGP models, we see that the values
are comparable across all datasets while the QSGP models performed noticeably better on
keggu and ctslice caused by overconfident predictions made by SVGP. Comparing the RMSE
values between the SVGP and QSGP models, we also see that the values are comparable
across all datasets with a few exceptions. The largest two deviances include the ctslice dataset
where the average RMSE of the SVGP model was nearly twice that of the QSGP models, as
well as the kin4 0k dataset where the QSGP models also performed significantly better.

Comparing the mean-field model QSGP-0 with a diagonal C to QSGP-100 with a chevron
C structure, we find that QSGP-100 generally admits lower MNLP values, suggesting a more
accurate predictive posterior variance. On some datasets such as ctslice, this effect is quite dra-
matic. This effect is expected since the chevron Cholesky parameterization allows important
posterior correlations between basis functions to be captured, unlike the mean-field (diagonal
C) parameterization which allows no posterior correlations to be captured and tends to give

over-confident predictions.

6.4.4 Optimization Trace Studies

In this study we analyze the effect of control variate rank () and basis function minibatch

size (M) on the optimization trajectory. Figure 6.2 plots the value of the (exact) ELBO verses
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QSGP-0 QSGP-100 SVGP
Dataset n d RMSE MNLP | RMSE MNLP | RMSE MNLP
kin40k 40000 8 0.174+0.004 0.135 0.175+0.004 0.139 0.24740.004 0.055
protein 45730 9 0.602+0.007 1.34 0.602+0.007 1.34 0.542+0.006 1.06
kegg 48827 20 0.13540.004 -0.821 0.13540.004 -0.794 0.124+0.005 -0.953

ctslice 53500 385 | 2.484+0.107 0.377 2.488+0.107 -0.541 | 4.746%0.087 1.08
keggu 63608 27 0.120£0.004 0.783 0.120£0.004 -0.268 | 0.120£0.003 36.1
song 515345 90 0.49240.002 1.26 0.49240.002 1.26 0.488+0.002 1.26

Table 6.2: Large UCI regression dataset results. Mean and standard deviation of RMS test error over five test-train splits, as well
as MNLP of the test set from the first split.
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Figure 6.2: Value of the exact ELBO verses wall-clock time for various values of m and 7 on the first split of the kin40k dataset.

wall-clock time for various values of m and 7 on the first split of the kin/ 0k dataset (note that the
plot is zoomed-in since the initial ELBO magnitude was extremely large). The experimental
setup is otherwise identical to that of the QSGP-100 model in section 6.4.3 such that the model
at the end of the m = 10000, 7 = 500 curve is exactly the model (i.e., the same RMSE and MNLP)
presented in table 6.2. Notice that where the curve flattens, the gradient variance dominates
convergence for the chosen learning rate schedule. Here the benefits of the control variate are ev-
ident where the performance of the m =103, n = 500 curve gives approximately the same ELBO
value as the m = 10%, 7 =0 curve. In other words, including the control variate allowed reducing
the basis function minibatch size by an order of magnitude without degradation of optimization
performance. The minibatch size m also has a noticeable effect on performance, although this
effect is less than the inclusion of the control variate. We would also like to emphasize that gra-
dient variance is lesser for the theorem 6.3 estimator for certain site projections. For instance,
in the MNIST classification studies of section 6.4.1, fast convergence was observed even though

no control variate was used and a relative minibatch size of only % =(0.002 was considered.

6.4.5 Regression Studies with Inducing Point Kernel Approximations

This section considers additional regression studies with an inducing point kernel approxi-
mation rather than the random Fourier feature approximation used in the regression studies
of section 6.4.3. We again consider inference on large regression datasets from the UCI

repository; however, for this study, we choose to use an inducing point approximation
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QSGP-0 SVGP Yang et al. (2015)
Dataset n d Time RMSE MNLP | RMSE MNLP | RMSE

kin40k 40000 8 1.40hrs 0.154+0.007 -0.348 | 0.171+0.003 -0.089 0.28+0.01
protein 45730 9 2.13hrs  0.598+0.007 1.157 0.598+0.007  1.159 0.53+0.01
kegg 48827 20 1.70hrs  0.12440.005 -0.554 0.124+0.004 -0.883 | 0.124+0.01
ctslice 53500 385 | 5.18hrs  2.57440.263 0.149 2.938+£0.098 -0.440 | 4.00%0.12
keggu 63608 27 1.46hrs  0.12340.004 0.848 0.118+0.004 64.014 0.124+0.00
song 515345 90 3.84hrs  0.491£0.002 1.374 0.491£0.002 1.321 0.49+0.00

Table 6.3: Large UCI regression dataset results. Mean and standard deviation of RMS test error and average training time over
five test-train splits, as well as MNLP of the test set from the first split. These results differ from those of table 6.2 in the kernel
approximation used for QSGP in addition to the fact that empirical Bayes is not performed.

with n = m inducing points centred on each training point. The inducing point kernel
approximation results in ® =S = Kx x, the exact kernel covariance matrix between training
points. Clearly S = Kx x will be dense in general, therefore we do not consider empirical
Bayes in the studies but keep the kernel hyperparameters fixed. This is a natural kernel
approximation choice in many ways since it can be shown that the approximation recovers the
exact GP prior (i.e., y ~N (0, Kx x +0°1,)), and the learning procedure recovers the exact GP
predictive posterior mean. While the exact GP predictive posterior variance is not recovered,
we use an augmentation strategy that incurs negligible additional cost to improve the quality
of the predictive variance. This augmentation procedure is outlined in proposition D.1.

For the regression studies here, the proposed quadruply stochastic Gaussian process (QSGP)
model approximates a squared-exponential kernel with automatic relevance determination
and we compare our test errors to those reported by Yang et al. (2015) on the same train-
test splits where the same kernel type was approximated using Fastfood expansions. We also
compare to stochastic variational Gaussian processes (SVGP) using GPFlow (Hensman et al.,
2015; Matthews et al., 2017) with 512 inducing points whose locations are learned®. For the
QSGP model, a mean-field (diagonal) covariance parameterization is assumed and therefore
following the notations of section 6.4.3, we denote this model as QSGP-0. Mini-batch sizes of
n=m=3000 and a rank =200 control variate was used for all datasets except for ctslice which
used 12 =m=1000. Optimization was performed with AdaGrad (Duchi et al., 2011). For both
QSGP and SVGP, o2 and all kernel hyperparameters were initialized by performing empirical
Bayes with an exact GP constructed on 1000 points randomly selected from the dataset.

Results are presented in table 6.3 where we report the mean and standard deviation of
the RMSE over five test-train splits (90% train, 10% test per split). Also presented is the
MNLP of the predictive posterior on the test data in the first split, and mean training time
per split on a machine with one GeForce GTX 980 Ti graphics card. The best MNLP value
of each row is in boldface whereas the best RMSE value is only in boldface if the difference
is statistically significant (if the means differ by more than three standard deviations). The
RMSE results in table 6.3 demonstrate that QSGP performs well on these large datasets

which is not surprising considering that the model has the capacity to recover the exact GP

3Note that the SVGP model in this study is identical to the SVGP model considered in section 6.4.3 except here the model
hyperparameters are fixed to initial values, as is done for the QSGP model.
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Figure 6.3: QSRVM fit to a noisy sinc dataset with n =500. Training points are the small black dots, and the relevance vectors
are indicated by large black dots. The shaded blue region is one standard deviation from the predictive posterior mean.

posterior mean. Interestingly, QSGP performs nearly identically to the other sparse GP
models for the kegg, keggu, and song datasets. This could indicate that the exact GP mean
can be approximated well by lower capacity models for these problems.

Considering the MNLP results, QSGP performed comparably to the SVGP model while
performing noticeably better on keggu. While a mean-field assumption was made for these
studies, we explore going beyond mean-field through the use of the chevron Cholesky structure

in the regression results of section 6.4.3.

6.4.6 Relevance Vector Machines

In this section we apply the proposed quadruply stochastic inference procedure to relevance
vector machines (also discussed in section 5.3.2), and we refer to this model as the quadruply
stochastic relevance vector machine (QSRVM). QSRVMs are identical to the QSGP model
except that we parameterize S = diag(s), where s € (0,00)™ are separate prior precision
hyperparameters for each basis function. When we maximize the evidence with respect to
s by empirical Bayes, a significant fraction of them will tend to infinity and the posterior
distribution over the corresponding weight parameters will be concentrated at zero, thus
achieving model sparsity. For the QSRVM model we consider m = n basis functions that are
kernel evaluations at all n training points such that ® = Kx x, the exact kernel covariance
matrix between training points. After training, the vectors x(*) with s; finite are referred to
as “relevance vectors”. In practice, we consider s; < 10* to be finite.

Figure 6.3 demonstrates the QSRVM model trained on a noisy sinc dataset with n=m =500
training points (and basis functions). For this model, we also use a chevron Cholesky vari-
ational covariance parameterization where the first ten columns of C have a dense lower
triangle. We also use the control variate outlined in proposition 6.3 for both the variational
mean term and the terms corresponding to all ten dense columns of C with control variate
rank 17=250. For inference, we use mini-batch sizes of m =250, and n =100.

Figure 6.3 plots both the m = n =500 training points (and basis function centres), along
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with the locations of the discovered relevance vectors that are present the final model. In
the plot, it can be seen that just 13 relevance vectors remained in the model after training.
Evidently this model is extremely sparse.

The quadruply stochastic approach to training relevance vector machines introduces a novel
strategy that can allow for sparse models to be learned on huge datasets since the per-iteration
complexity does not depend on the number of training points or the number of basis functions

in the original dictionary. This can be a limitation for alternative RVM training techniques.

6.5 Conclusion

The proposed QSGP method demonstrates how stochastic variational inference can be applied
to sparse Gaussian processes to give a per-iteration complexity that is independent of both the
number of training points and the number of basis functions that define the kernel. The tech-
nique therefore enables Gaussian process inference to be performed on huge datasets (large n)
with highly accurate kernel approximations (since m can be made large). A novel variance re-
duction strategy was also developed to accelerate SGD convergence, and the QSGP approach
was demonstrated on large regression and classification problems with up to m = 107 basis func-

tions to show the scaling capabilities with respect to both dataset size and model capacity.



Chapter 7

Variational Inference
with Discrete Variable Models

In this chapter we explore a new research direction in Bayesian variational inference with
discrete latent variable priors where we exploit Kronecker matrix algebra for efficient and
exact computations of the evidence lower bound (ELBO). The proposed DIRECT (DIscrete
RElaxation of ConTinous variables) approach has several advantages over its predecessors:
(i) it can exactly compute ELBO gradients (i.e., unbiased, zero-variance gradient estimates),
eliminating the need for high-variance stochastic gradient estimators and enabling the use of
quasi-Newton optimization methods; (ii) its training complexity is independent of the number
of training points, permitting inference on large datasets; and (iii) its posterior samples
consist of sparse and low-precision quantized integers which permit fast inference on hardware
limited devices. In addition, our DIRECT models can exactly compute statistical moments of
the parameterized predictive posterior without relying on Monte Carlo sampling. While the
DIRECT approach is not practical for all likelihoods, we identify a popular model structure
which is practical, and demonstrate accurate inference using latent variables discretized as
low-precision 4-bit quantized integers. While the ELBO computations considered in the
numerical studies require over 10%*>? log-likelihood evaluations, we train on datasets with
over two-million points in just seconds. A particular application of the methods introduced
in this chapter is the discrete relaxation of a Gaussian process prior which we consider in

section 7.5.3. The following paper was published from the contents of this chapter:
T. W. Evans and P. B. Nair (2018a). “Discretely Relaxing Continuous Variables

for tractable Variational Inference”. In: Advances in Neural Information Processing
Systems, pp. 1048710497, spotlight paper.

7.1 Introduction

Hardware restrictions posed by mobile devices make Bayesian inference particularly ill-suited

for on-board machine learning. This is unfortunate since the safety afforded by Bayesian

101
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statistics is valuable in many prominent mobile applications. The robustness and uncertainty
quantification provided by Bayesian inference is therefore very valuable for these applications
provided inference can be performed on-board in real-time (Bradshaw et al., 2017; Thrun
et al., 2005).

Outside of mobile applications, resource efficiency is still an important concern. For
example, deployed models making billions of predictions per day can incur substantial energy
costs, making energy efficiency an important consideration in modern machine learning
architectures (Louizos et al., 2017).

We approach the problem of efficient Bayesian inference by considering discrete latent
variable models such that posterior samples of the variables will be quantized and sparse,
leading to efficient inference computations with respect to energy, memory, and computational
requirements. Training a model with a discrete prior is typically very slow and expensive,
requiring the use of high variance Monte Carlo gradient estimators to learn the variational
distribution. The main contribution of this work is the development of a method to rapidly
learn the variational distribution for such a model without the use of any stochastic estimators;
the objective function will be computed exactly at each iteration. To our knowledge, such an
approach has not been taken for variational inference of large-scale probabilistic models.

In this chapter, we compare our work not only to competing stochastic variational inference
(SVI) methods for discrete latent variables, but also to the more general SVI methods for
continuous latent variables. We make this comparison with continuous variables by discretely
relaxing continuous priors using a discrete prior with a finite support set that contains much
of the structure and information as its continuous analogue. Using this discretized prior
we show that we can make use of Kronecker matrix algebra for efficient and exact ELBO
computations. We will call our technique DIRECT (Dlscrete RElaxation of ConTinous

variables). We summarize our main contributions below:

o We efficiently and exactly compute the ELBO using a discrete prior even when this
computation requires more likelihood evaluations than the number of atoms in the known
universe. This achieves unbiased, zero-variance gradients which we show outperforms
competing Monte Carlo sampling alternatives that give high-variance gradient estimates

while learning.

o Complexity of our ELBO computations are independent of the quantity of training
data using the DIRECT method, making the proposed approach amenable to big data

applications.

o At inference time, we can exactly compute the statistical moments of the parameterized
predictive posterior distribution, unlike competing techniques which rely on Monte Carlo

sampling.

o Using a discrete prior, our models admit sparse posterior samples that can be represented

as quantized integer values to enable efficient inference, particularly on hardware limited
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devices.

o We present the DIRECT approach for generalized linear models and deep Bayesian
neural networks for regression, and discuss approximations that allow extensions to

many other models.

e Our empirical studies demonstrate superior performance relative to competing SVI

methods on problems with as many as 2 million training points.

This chapter will proceed as follows; section 7.2 contains a background on variational infer-
ence and poses the learning problem to be addressed while section 7.3 outlines the central ideas
of the DIRECT method, demonstrating the approach on several popular probabilistic models.
Section 7.4 discusses limitations of the proposed approach and outlines some workarounds, for
instance, we discuss how to go beyond mean-field variational inference. We empirically demon-
strate our approaches in section 7.5, and conclude in section 7.6. Full code for the methods

introduced in this chapter is available at https://github.com/treforevans/direct.

7.2 Variational Inference Background

We begin with a review of variational inference, a method for approximating probability
densities in Bayesian statistics (Blei et al., 2017; Hoffman et al., 2013; Jordan et al., 1999;
Kucukelbir et al., 2017; Ranganath et al., 2014; Wainwright and Jordan, 2008). We introduce
a regression problem for motivation; given X e R?", y e R", a d-dimensional dataset of size
n, we wish to evaluate v, at an untried point x, € R% by constructing a statistical model that
depends on the b latent variables in the vector weR?. After specifying a prior over the latent
variables, Pr(w), and selecting a probabilistic model structure that admits the likelihood
Pr(y|w), we may proceed with Bayesian inference to determine the posterior Pr(w|y) which
generally requires analytically intractable computations.

Variational inference turns the task of computing a posterior into an optimization problem.
By introducing a family of probability distributions gg(w) parameterized by 6, we minimize
the Kullback-Leibler divergence to the exact posterior (Blei et al., 2017). This equates
to maximization of the evidence lower bound (ELBO) which we can write as follows for a

continuous or discrete prior, respectively:

Prior ELBO
A ELBO(0) = JQG(W) (logP1r(y|w)+logP1r(w)—logqg(w)>alw7 (7.1)
Al PBo@=a (st s10sp-toga), (72)

where log £ = {log Pr(y|w;)}™,, log p = {log Pr(w;)},, q = {qe(w;)}";, and
{w;}, = WeR"™ is the entire support set of the discrete prior.
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It is immediately evident that computing the ELBO is challenging when b is large, since
in the continuous case eq. (7.1) is a b-dimensional integral, and in the discrete case the size of
the sum in eq. (7.2) generally increases exponentially with respect to b. Typically, the ELBO
is not explicitly computed and instead, a Monte Carlo estimate of the gradient of the ELBO
with respect to the variational parameters @ is found, allowing stochastic gradient descent
to be performed. We will outline some existing techniques to estimate ELBO gradients with
respect to the variational parameters, 6.

For continuous priors, the reparameterization trick (Kingma and Welling, 2013) can
be used to perform variational inference. The technique uses Monte Carlo estimates of
the gradient of the evidence lower bound (ELBO) which is maximized during the training
procedure. While this approach has been employed successfully for many large-scale models,
we find that discretely relaxing continuous latent variable priors can improve training and
inference performance when using our proposed DIRECT technique which computes the
ELBO (and its gradients) exactly.

When the latent variable priors are discrete, reparameterization cannot be applied; however,
the REINFORCE (Williams, 1992) estimator may be used to provide an unbiased estimate
of the ELBO gradient during training (alternatively called the score function estimator (Fu,
2006), or likelihood ratio estimator (Glynn, 1990)). Empirically, the REINFORCE gradient
estimator is found to give a high variance when compared with reparameterization, leading to
a slow learning process. Unsurprisingly, we find that our proposed DIRECT technique trains
significantly faster than a model trained using a REINFORCE estimator.

Recent work in variational inference with discrete latent variables has largely focused on
continuous relaxations of discrete variables such that reparameterization can be applied to
reduce gradient variance compared to REINFORCE. One example is CONCRETE (Jang
et al., 2016; Maddison et al., 2016) and its extensions (Grathwohl et al., 2017; Tucker et al.,
2017). We consider an opposing direction by identifying how the ELBO (eq. (7.2)) can be
computed exactly for a class of discretely relaxed probabilistic models such that the discrete
latent variable model can be trained more easily then its continuous counterpart. We outline

this approach in the following section.

7.3 DIRECT: Efficient ELBO computations

We outline the central ideas of the DIRECT method and illustrate its application on several
probabilistic models. The DIRECT method allows us to efficiently and exactly compute
the ELBO which has several advantages over existing SVI techniques for discrete latent
variable models such as zero-variance gradient estimates (i.e., exact gradient computations),
the ability to use a super-linearly convergent quasi-Newton optimizer (since our objective is
deterministic), and the per-iteration complexity is independent of training set size. We will

also discuss advantages at inference time such as the ability to exactly compute predictive
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posterior statistical moments, and to exploit sparse and low-precision posterior samples.
To begin, we consider a discrete prior over our latent variables whose support set W forms
a Cartesian tensor product grid as most discrete priors do (e.g., any prior that factorizes

between variables) so that we can write

We 1l e - e 1l
12 ® v_V2T R - ® 17:%

W=| . . , - (7.3)
1% ® 1% ® - ® V—VZ“

where 1, € R™ denotes a vector of ones, w; € R™ contains the m discrete values that the
ith latent variable w; can take!, m = m®, and ® denotes the Kronecker product (Van Loan,
2000). Since the number of columns of W € RY*™" increases exponentially with respect to
b, it is evident that computing the ELBO in eq. (7.2) is typically intractable when b is large.
For instance, forming and storing the matrices involved naively require exponential time and
memory. We can alleviate this concern if q, logp, log€, and logq can be written as a sum of
Kronecker product vectors (i.e., >, ®§:1f§"), where fg.i) eR™). If we find this structure, then
we never need to explicitly compute or store a vector of length m. This is because eq. (7.2)
would simply require multiple inner products between Kronecker product vectors which the

following result demonstrates can be computed extremely efficiently.

Proposition 7.1. The inner product between two Kronecker product vectors k = ®§=1k(i),
and a=®?_,a" can be computed as follows (Van Loan, 2000):

b
a"k=[ [a®"k®, (7.4)

i=1
where a®eR™ aeR™ kD eR™, and ke R™".

This result enables substantial savings in the computation of the ELBO since each inner
product computation is reduced from the naive ezponential O(m®) cost to a linear O(bm) cost.
We now discuss how the Kronecker product structure of the variables in eq. (7.2) can be
achieved. Firstly, if the prior is chosen to factorize between latent variables, as it often is,
(i.e., if Pr(w) = HlePr(wi)) then p = ®’_,p; admits a Kronecker product structure where
p; = {Pr(w; = w;;)}7, € (0,1)™. The following result demonstrates how this structure for p

enables logp to be written as a sum of b Kronecker product vectors.

Proposition 7.2. The element-wise logarithm of the Kronecker product vector k = ®§»’=1k(i)

1The discrete values that the ith latent variable can take, W;, may be chosen a priori or learned during ELBO maximization
(may be helpful for coarse discretizations). For the sake of simplicity, we focus on the former.
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can be written as a sum of b Kronecker product vectors as follows:

b
logk = Plogk?, (7.5)

i=1

where kY e R™, ke R™ contain positive values, and @ is a generalization of the Kronecker

sum (Horn and Johnson, 199/) for vectors which we define as follows:

b b ri-1 b
Plogk™ =>" <®1m) ®logk"® ( ) 1m) . (7.6)
i=1 i=1 \j=1 j=i+1
This result is easy to verify by analyzing the structure of the log of the expanded vector k.
Proceeding, we first consider a mean-field variational distribution that factorizes over latent
variables such that both q=®?_,q; and logq =@®?_,logq; can be written as a sum of Kronecker
product vectors, where q; = {Pr(w; =wj;)}i2, € (0,1)™ are used as the variational parameters,

0, with the use of the softmax function. For the mean-field case we can rewrite eq. (7.2) as

b b
ELBO(0) = quogE—l—EqiTlogpi —ZqiTloqu-, (7.7)
i=1 i=1
where we use the fact that q, defines a valid probability distribution for the ¢th latent variable
such that q7 1, = 1. We extend results to unfactorized prior and variational distributions
later in section 7.4.2.
The structure of log#€ depends on the probabilistic model used; in the worst case, log#
can always be represented as a sum of m Kronecker product vectors. However, many models
admit a far more compact structure where dramatic savings can be realized as we demonstrate

in the following sections.

7.3.1 Generalized Linear Regression

We first focus on the popular class of Bayesian generalized linear models (GLMs) for regres-
sion. While the Bayesian integrals that arise in GLMs can be easily computed in the case of
conjugate priors, for general priors inference is challenging.

This highly general model architecture has been applied in a vast array of application
areas. Perhaps most notably, Gaussian processes can be seen as generalized linear models with
Gaussian priors on the weights, see section 2.2.1. Therefore as one application of the developed
approaches, the DIRECT method can be used to discretely relax Gaussian process priors.

Consider the generalized linear regression model y = ®w + €, where € ~ N(0, 0°1,,), and
& = {¢;(x;)}:; € R™ contains the evaluations of the basis functions on the training data.
The following result demonstrates how the ELBO can be exactly and efficiently computed,
assuming the factorized prior and variational distributions over w discussed earlier. Note that

we also consider a prior over o2
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Theorem 7.1. The ELBO can be exactly computed for a discretely relazed regression GLM

as follows:

ELBO(0) = ——qg Togo? - % (afo™?) (yTy— 2s” (<I>Ty) +57®TPs—diag(®T @) s?+

b
quhj> +> ,(a/ logp,—q/ logq;) + 42 logp, —qlogq,, (7.8)
=1 i=1

where q,,., p, € R™ are factorized variational and prior distributions over the Gaussian noise
variance o for which we consider the discrete positive values o® e R™, respectively. Also, we
use the shorthand notation H = {w3> " | ¢7}5_; e R™" (whose jth column is h; e R™), and
s={q w;}}_ eR".

2

Proof. For a generalized linear regression model with a prior over o*, we can re-write eq. (7.7)

as follows:

b b
ELBO(6) = (q,®q) "log€+ > q/ logp, — » 'q/ logq, + q}logp, —qlogq,,  (7.9)
i=1 i=1
where we have simply expanded the factorized variational distribution to include o2, resulting
in the two extra terms. To complete the ELBO in eq. (7.9), we need to take the inner product
between the variational distribution and log-likelihood for each point in the hypothesis space,

(q, ® q)Tlogl. We can write this relation as follows for our generalized linear regression
model (see e.g., Bishop (2006)):

1
(qa®q)T1°g£——§qolog0 —2(q§0’2) (a"{(y—2w:)" (y—®w,;)}1")), (7.10)

whose computation would be prohibitively expensive when m =m? is large. We will now focus
on computing the inner product involving the variational distribution over the w variables, q,

which we can break into three terms as follows:
qT{(y—@WZ) (y ‘I)Wz)}z 1 —y y— QQT{YT(I)Wz =1 +qT{WT(I)T(I)WZ i=1s (7'11)

for which the first term is trivial to compute as written since it does not depend on
w. We now demonstrate how the second and third terms can be computed, recalling
that we have assumed that q is a mean-field variational distribution. Firstly, define
Z=(®W)" ={@"_ ¢ijw;}i_; e R™™ whose columns contain the model prediction for a single
training point at every possible set of latent variable values in the hypothesis space. Observe
that each column is represented as a sum of b Kronecker product vectors. We can then write
the second term of eq. (7.11) as

a’ {y"ew;}7" Zqu Z;= Zylz@jquj quwj<2yz¢m)—s (@"y), (7.12)

=1 j=1
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where s = {q] w;}5_; € R". Finally, considering the third term of eq. (7.11), observe that

we can write {w! ®" ®w,}™ = >" 72 and since each z, is a sum of b Kronecker product

vectors, zZ a sum of (b+b%)/2 Kronecker product vectors. We can then write the third term
of eq. (7.11) as follows:

n b b
a {wl®Tew L =) > i wioh+2 D dydula W) (di W), (7.13)
1= lj—l k=j+1
_qu <_22¢w> +2 Z S5 Sk <Z¢ij¢ik>a (7.14)
k=j+1 =
=s"®" s —diag(®"®)"'s +Zq]Th], (7.15)
j=1

where we have used the short-hand notation H = {W2 Sy b _, € R™*® Substituting
q. (7.12) and eq. (7.15) into eq. (7.11), we can re-write the inner product between the
Variational distribution and the log-likelihood in eq. (7.10) as follows:

1 _
(qa®q)T10gf——§qologa —5 (0o 2)(yTy—QsT(<I>Ty)+qu>Tq>s—

diag(®"®)" +quh> (7.16)

and substituting this into eq. (7.9) completes the proof. ]

We can pre-compute the terms y”y, ®”y, H, and & ® before training begins (since these
do not depend on the variational parameters) such that the final complexity of the proposed
DIRECT method outlined in theorem 7.1 is only O(bm+b%). This complexity is independent
of the number of training points, making the proposed technique ideal for massive datasets.
Also, each of the pre-computed terms can easily be updated as more data is observed making

the techniques amenable to online learning applications.

Predictive Posterior Computations

Typically, the predictive posterior distribution is found by sampling the variational distribu-
tion at a large number of points and running the model forward for each sample. To exactly
compute the statistical moments, a model would have to be run forward at every point in
the hypothesis space which is typically intractable; however, we can exploit Kronecker matrix
algebra to efficiently compute these moments exactly. For example, the exact predictive

posterior mean for our generalized linear regression model is computed as follows:

Z Jy*Pr y*|W1)dy*, . Wq=2,s, (717)
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wheres={q] w;}’_, €R’, and ®, e R"*" contains the basis functions evaluated at x,. This com-
putation is highly efficient, requiring just O(b) time per test point. It can be shown that a simi-
lar scheme can be derived to exactly compute higher order statistical moments, such as the pre-
dictive posterior variance, for generalized linear regression models and other DIRECT models.

We have shown how to exactly compute statistical moments, and now we show how to
exploit our discrete prior to compute predictive posterior samples efficiently. This sampling
approach may be preferable to the exact computation of statistical moments on hardware
limited devices where we need to perform inference with extreme memory, energy, and
computational efficiency. The latent variable posterior samples W e Rbxnum. samples )] of
course be represented as a low-precision quantized integer array because of the discrete
support of the prior which enables extremely compact storage in memory. Much work has
been done elsewhere in the machine learning community to quantize variables for storage
compression purposes since memory is a very restrictive constraint on mobile devices (Chen
et al., 2015; Gong et al., 2014; Han et al., 2015; Zhou et al., 2017). However, we can go beyond
this to additionally reduce computational and energy demands for the evaluation of @*W.
One approach is to constrain the elements of w to be 0 or a power of 2 so that multiplication
operations simply become efficient bit-shift operations (Hubara et al., 2016; Li et al., 2016b;
Rastegari et al., 2016). An even more efficient approach is to employ basis functions with
discrete outputs so that ®, can also be represented as a low-precision quantized integer array.
For example, a rounding operation could be applied to continuous basis functions. Provided
that the quantization schemes are an affine mapping of integers to real numbers (i.e., the
quantized values are evenly spaced), then inference can be conducted using efficient integer

arithmetic (Jacob et al., 2017). Either of these approaches enable efficient on-device inference.

7.3.2 Deep Neural Networks for Regression

We consider the hierarchical model structure of a Bayesian deep neural network for regression.
Considering a DIRECT approach for this architecture is not conceptually challenging so long
as an appropriate neuron activation function is selected. We would like a non-linear activation
that maintains a compact representation of the log-likelihood evaluated at every point in the
hypothesis space, i.e., we would like log€ to be represented as a sum of as few Kronecker product
vectors as possible. Using a power function for the activation can maintain a compact repre-
sentation; the natural choice being a quadratic activation function (i.e., output ? for input z).

It can be shown that the ELBO can be exactly computed in O(¢m(b/€)*) for a deep
Bayesian neural network with ¢ layers, where we assume a quadratic activation function and
an equal distribution of discrete latent variables between network layers. This complexity
evidently enables scalable Bayesian inference for models of moderate depth, and like we found
for the regression GLM model of section 7.3.1, computational complexity is independent of
the quantity of training data, making this approach ideal for large datasets. We outline this
model and the computation of its ELBO in appendix E.
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7.4 Limitations & Extensions

In general, when the support of the prior is on a Cartesian grid, any prior, likelihood, or
variational distribution (or log-distribution) can be expressed using the proposed Kronecker
matrix representation; however, this representation will not always be compact enough to
be practical. We can see this by viewing these probability distributions over the hypothesis
space as high-dimensional tensors. In section 7.3, we exploited some popular models whose
variational probability tensors and whose prior, likelihood, and variational log-probability
tensors all admit a low-rank structure; however, other models may not admit this structure,
in which case their representation will not be so compact. In the interest of generalizing the
technique, we outline a likelihood, a prior, and a variational distribution that does not admit
a compact representation of the ELBO and discuss several ways the DIRECT method can
still be used to efficiently compute, or lower bound the ELBO. We hope that these extensions

inspire future research directions in approximate Bayesian inference.

7.4.1 Generalized Linear Logistic Regression

Logistic regression models do not easily admit a compact representation for exact ELBO
computations; however, we will demonstrate that we can efficiently compute a lower-bound
of the ELBO by leveraging developed algebraic techniques. To demonstrate, we will consider
a generalized linear logistic regression model which is commonly employed for classification
problems. Such a model could easily be extended to a deep architecture following Bradshaw
et al. (2017), if desired. All terms in the ELBO in eq. (7.7) can be computed exactly for this
model except the term involving the log-likelihood, for which the following result demonstrates

an efficient computation of the lower bound.

Theorem 7.2. For a generalized linear logistic regression model with classification training la-
belsy€{0,1}", the class-conditional probability Pr(y; =0|w)=(1+exp(—®[i,:]w))™", and with

the assumption that training examples are sampled independently, the following inequality holds

: { [T exp(—oi,w;) ifyi=0 (7.18)

T T(&T
q logl>—s" (P y)— _ o
(#7y)-2, [T5_ ol exp(¢yw;) =X _1al ¢y W, ifyi=1

i=1

Proof. For the generalized linear logistic regression model considered, we can write the log
likelihood as follows (see e.g., Bishop (2006)):

10g£=2—yizi—log(1 —I—exp(—zi)), (7.19)

i=1
where Z = (®W)" = {@"_,¢;;w,}7_, € R™" is a matrix whose columns contain the logit
values for a single training point at every possible set of latent variables in the hypothesis

space. It is evident that the first term is identical to that discussed in eq. (7.12); however,
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computation of the second term requires more development. We can write

q’logl=—s" Z q’log(1+exp(—z;)). (7.20)

Since z; = @?:1@jo e R™ is a sum of b Kronecker product vectors, each with one unique
sub-matrix that is not unity, exp(—z;) is a single Kronecker product vector. This follows from

Proposition 7.2. We can then take a Taylor series explanation of log(l +exp(—zi)) as follows:

0
log(1+exp(— Z exp kzi) for |exp(—z;)| <1—2;>0, (7.21)

log(1+exp(—z;) for |exp(—z;)| >1—z; <0, (7.22)

i exp (kz;)
and although the use of either choice would result in an ELBO lower bound, we choose the
approximation based on the training label as follows; if y; = 0 or 1 then we would choose
the (z; > 0) or (z; < 0) approximation, respectively. We choose this because z; > 0 gives a
higher class conditional probability to class 0 than class 1 so this approximation would yield a
tight lower bound when the training examples are correctly classified. These approximations
are plotted in fig. 7.1 with a first-order expansion where it is evident that the computation
lower-bounds the exact computation. Using this first-order Taylor series approximation, we
can write our lower bound for the inner product between the variational distribution and the

log-likelihood as follows which completes the proof,

if 1, =0
qTlogl> —sT q’exp(—2) RY=T 7.23
o8 1—21 qlexp(z;)—qlz; ify;=1 ( )
= qj exp(—oi;w;) if y; =0
— Z =1 A oo ) (7.24)
i=1 g 1qj eXp(¢1JW]) Zj:lqi piw; ity =1

O

The computations in the lower bound of theorem 7.2 can be performed in O(mbn) time,
where dependence on n is evident unlike in the case of the exact computations described in
section 7.3. As a result, stochastic optimization techniques should be considered.

Using the lower bound in theorem 7.2, the log-likelihood is accurately approximated for
hypotheses that correctly classify the training data; however, hypotheses that confidently
misclassify training labels may be over-penalized. This is because we expect the Taylor series
approximations (used in the proof) to admit a tight bound only within and just outside of their
logit domains (i.e., where a label is correctly classified) as we can see in fig. 7.1. Far outside
of the approximation domain (i.e., where a label is incorrectly classified) it can be observed
in fig. 7.1 how the approximation may significantly underestimate the exact solution. As a

result, this lower bound has the effect of erroneously decreasing the likelihood of hypotheses
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Figure 7.1: First-order Taylor series approximation of  Figure 7.2: Taylor series approximation of — log(gq) about
— log (1 + exp(—z)). The approximations evidently lower- a=0.5. The approximations evidently lower-bound the exact
bound the exact computation. computation.

that misclassify examples, thus resulting in less posterior probability mass on these hypothesis
verses exact inference.

As a final remark, the products over b terms in theorem 7.2 may result in overflow or
loss of precision; however, computations can be performed in a stable manner in logit space,
and the LogSumExp trick (Nielsen and Sun, 2016) can be used to avoid precision loss in the

summadtions.

7.4.2 Unfactorized Variational Distributions

We now consider going beyond a mean-field variational distribution to account for correlations
between latent variables. Considering a finite mixture of factorized categorical distributions
as is used in latent structure analysis (Goodman, 1974; Lazarsfeld and Henry, 1968), we
can write q = Y _, o ®;’.:1 qg.i), where a € (0,1)" is a vector of mixture probabilities for r
components, and qg»i) = {Pr(w; =wjxli)}7,€(0,1)™

While q can evidently be expressed as a compact sum of Kronecker product vectors, logq
is more challenging to compute than in the mean-field case; however, the following result

demonstrates how we can lower-bound the term involving logq in the ELBO (eq. (7.7)).

Theorem 7.3. The following inequality holds when we consider a finite mixture of factorized

categorical distributions for qo(w),

_quogq> max ) 1 ZO{] <Zq logal+aJHqZJ)qu +22akl_[q(j qu )’

{aic(0,1)™ & k=j+1 i=1

where a=®°_,a;, a;€ (0,1)™ is the center of the Taylor series approzimation of logq.

Proof. We begin by taking a Taylor series approximation of logq about a=®?_,a;, a;€ (0,1)™
as follows:

1)(k+1)

logq—loga+2 (q—a)k, (7.25)

k=1
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which can be represented as a sum of Kronecker product vectors once the exponents are
computed explicitly. However, the number of terms in this sum will grow quickly with respect
to the order of the Taylor series approximation. When a first order Taylor series expansion
is considered, the approximation will give a strict lower bound of —logq and consequently a
lower bound of the ELBO (eq. (7.7)) will be achieved. The approximation for a linear Taylor
series expansion is plotted in fig. 7.2 where it is apparent that the approximation lower bounds
the exact computation. We consider this linear approximation for the result in theorem 7.3.
Note that the exact computation will always be lower bounded irrespective of the location
that the Taylor series is taken about, therefore, we may select the values of {a; € (0,1)™}2_,
that maximize this lower bound, as written in the theorem statement. We can then write our

approximation of the third term from the ELBO (eq. (7.7)) to complete the proof as follows:

T b
—q’logq> 1—204]- <Zq§j loga; +04qu2”qu +22a I_Iq(quZ ) (7.26)
j=1  Ni=1

lk’j-‘rl’ll
0

Note that if the mixture variational distribution q degenerates to a mean-field distribution
equal to a, then the equality in the theorem holds such that the ELBO will be computed
exactly. Conversely, as q moves away from a, the ELBO will be underestimated.

In theorem 7.3, the products over b terms might seem problematic; however, we do not
expect the final results to be too large to pose an overflow concern. To avoid precision loss,

we compute the log of the products, which can be done stably, and then exponentiate.

7.4.3 Unfactorized Prior Distributions

To consider an unfactorized prior, we assume a prior mixture distribution given by
P=2,_,0 ®§:1 pﬁi). When we use this mixture distribution for the prior, p can evi-
dently be expressed as a compact sum of Kronecker product vectors but logp cannot. The
following result demonstrates how we can still lower-bound the term involving logp in the
ELBO (eq. (7.2)). For simplicity, we assume that the variational distribution factorizes;

however, the result could easily be extended to the case of a mixture variational distribution.

Theorem 7.4. The following inequality holds when we consider a finite mixture of factorized

categorical distributions for pg(w),

r b
q"logp = ;Y g logp!’
=1 j=1
This result is easily verified by application of Jensen’s inequality. Note that the equality
only holds when the prior mixture degenerates to a factorized distribution with all mixture

components equivalent.
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7.4.4 Unbiased Entropy and Prior Expectation Gradients

We previously showed how to lower bound the ELBO terms qf logp and —q’ logq when
the variational and/or prior distributions do not factor; however, optimizing this bound
introduces bias and does not guarantee convergence to a local optimum of the true ELBO.
Here we reintroduce REINFORCE to deliver unbiased gradient estimates for these terms.
The REINFORCE estimator typically has high variance; however, since gradient estimates
for these terms are so cheap, a massive number of samples can be used per stochastic gradient
descent (SGD) iteration to decrease variance. Since we can still compute the expensive q”log#
term exactly when q is an unfactorized mixture distribution, its gradient can be computed
exactly. The unbiased gradient estimator of q”logq is expressed as follows?:
A ¢

%quong %qT (% (logg+ 1)2) ~ %%i_l(logq(si) + 1)2, (7.27)
where s; € R? is the ith of ¢+ samples from the variational distribution used in the Monte
Carlo gradient estimator. It is evident that this surrogate loss can be easily optimized using

automatic differentiation, and the per-sample computations are extremely cheap.

7.5 Numerical Studies

7.5.1 Comparison with REINFORCE

As discussed in section 7.2, we cannot reparameterize because of the discrete latent variable pri-
ors considered; however, we can directly compare the optimization performance of the proposed
techniques with the REINFORCE gradient estimator (Williams, 1992). In fig. 7.3, we com-
pare ELBO maximization performance between the proposed DIRECT, and the REINFORCE
methods. For this study we generated a dataset from a random weighting of b = 20 random
Fourier features (section 5.3.1) of an exponentiated quadratic kernel (eq. (2.28)) and corrupted
by independent Gaussian noise. We use a generalized linear regression model as described in
section 7.3.1 which uses the same features with m = 3. We consider a prior over o2, and a mean-
field variational distribution giving m(b+ 1) = 63 variational parameters which we initialize
to be the same as the prior; a uniform categorical distribution. For DIRECT, an L-BFGS
optimizer is used (Byrd et al., 1995) and stochastic gradient descent is used for REINFORCE
with a varying number of samples used for the Monte Carlo gradient estimator. Both methods
use full batch training and are implemented using TensorFlow (Abadi et al., 2016). It can be
seen that DIRECT greatly outperforms REINFORCE both in the number of iterations and
computational time. As we move to a large n or a larger b, the difference between the proposed
DIRECT technique and REINFORCE becomes more profound. The superior scaling with re-

spect to n was expected since we had shown in section 7.3.1 that the DIRECT computational

2We used the identity (logq+1)® alggq = %% (logg+ 1)27 where ® denotes an elementwise product.
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Figure 7.3: Convergence rates of a GLM trained with REINFORCE verses the proposed DIRECT method. The DIRECT method
greatly outperforms REINFORCE in iterations and wall-clock time.

runtime is independent of n. However, the improved scaling with respect to b is an interesting
result and may be attributed to the fact that as the dimension of the variational parameter

space increases, there is more value in having low (or zero) variance estimates of the gradient.

7.5.2 One-Dimensional Regression Visualization

® Training Data ® Training Data ® Training Data
— exact — exact — exact
—— Posterior mean —— Posterior mean —— Posterior mean

(a) DIRECT mean-field model. (b) DIRECT mixture model with biased (c) DIRECT mixture model with unbi-
ELBO gradients. ased ELBO gradients.

Figure 7.4: Comparison of predictive posterior distributions found with various variational distributions and variational objectives.

In this study we will consider a one-dimensional DIRECT generalized linear model
with b = 100 basis functions and each latent variables will be able to take m = 15 values so
that posterior samples can be expressed as a vector of low-precision 4-bit quantized integers.
In this case, computing the exact posterior is intractable, since it would require evaluating
the model likelihood at m® = 15'% ~ 107 possible permutations of latent variables. However,
using the DIRECT method we can train this model extremely quickly.

The black dots in fig. 7.4 show a dataset of n = 20 points generated from an exact
underlying function which shown as a black line and given by the relation cos(2mx)exp(—x?).
The training observations are also corrupted with independent Gaussian noise. The basis
functions we will use are random Fourier features (section 5.3.1) of a squared exponential
kernel (eq. (2.28)). The latent variables have support at m = 15 equally spaced points between
—1 and 1 inclusive (i.e., w € linspace(—1, 1, m = 15)) and we also specify m = 15 discrete
values of independent Gaussian noise variance o2 with support at equally spaced points on

a log scale between 107> and 1072 inclusive (i.e., logspace(—5, —2, m = 15)). We place an
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independent uniform prior over both the latent variable and noise variance support.

In fig. 7.4a, we show that posterior mean (blue line) and samples from the posterior (shaded
blue region) where a factorizing variational distribution is considered. For this mean-field
model, we compute the ELBO as described in section 7.3.1 and optimize the variational
parameters using an L.-BFGS optimizer. Looking at the plot of the predictive posterior, it is
evident that the model fits the data well; however, the posterior distribution behaves poorly
away from the data.

In fig. 7.4b, we consider a mixture variational distribution that does not factorize. We use
a mixture distribution with » =5 components and maximize the ELBO lower bound derived
in theorem 7.3. Since the ELBO gradients are still deterministic in this case, we again use an
L-BFGS optimizer for training; however, since ELBO gradient estimates are biased, we are
not guaranteed to converge to a local optima of the ELBO. In the plot, it is evident that the
predictive posterior is more reasonable than that of the mean-field model.

In fig. 7.4c, we again consider a mixture variational distribution with » =5 components
but this time use the unbiased gradient estimator described in section 7.4.4 with ¢ = 100
Monte Carlo samples for the entropy gradient estimator. Since the gradient estimates are
now stochastic, we optimize the variational parameters with stochastic gradient descent.
Observing the figure, it is clear that the predictive posterior extrapolates the data better then
the mixture model trained by maximizing the ELBO lower bound. It would be expected that
optimizing an unbiased estimate of the ELBO would perform better; however, this comes at
the cost of introducing stochasticity into our optimization objective which ultimately requires
more optimization iterations. While the unbiased method takes slightly longer to train due
to its stochastic gradients, it is a more robust approach than using biased gradients. Still, a
mixture model with biased gradients often outperforms the (unbiased) mean-field model as a

result of a more flexible variational distribution.

7.5.3 Relaxing Gaussian Priors on UCI Regression Datasets

In this section, we consider discretely relaxing a continuous Gaussian prior on the weights
of a generalized linear regression model. This allows us to compare performance between a
reparameterization gradient estimator for a continuous prior (REPARAM) and our DIRECT
method for a relaxed, discrete prior.

Considering regression datasets from the UCI repository, we report the mean and standard
deviation of the root mean squared error (RMSE) from 10-fold cross validation (90% train,
10% test per fold). Also presented is the mean training time per fold on a machine with two
E5-2680 v3 processors and 128Gb of RAM, and the expected sparsity (percentage of zeros)
within a posterior sample. Using a generalized linear model, we consider b = 2000 random
Fourier features (section 5.3.1) of a squared-exponential kernel (eq. (2.28)) with automatic
relevance determination. Before generating the features, we initialize the kernel hyperpa-

rameters including the prior variance o2 and the Gaussian noise variance o by maximizing
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the marginal likelihood of an exact Gaussian process constructed on min(n, 1000) points
randomly selected from the dataset. All discretely relaxed models (containing “DIRECT”),
only have support at m = 15 equally spaced points between —30,, and 30, inclusive (i.e.,
w € linspace(—30y,30,,m = 15)), allowing w to be stored as 4-bit quantized integers. We
fix 02 to be a single value since a prior over this value cannot be computed analytically for the
models we will compare against (although section 7.3.1 discussed how we can easily place a
prior distribution over o2 for our discrete model in practice).

For REPARAM we perform doubly stochastic optimization using a mini-batch size of 100
and using 10 Monte Carlo samples for the gradient estimates at each iteration. For datasets
with n < 3000 we optimize for 1000 iterations and we optimize for 10000 iterations for all
larger datasets. This model was implemented in Edward (Tran et al., 2016). For the DIRECT
mean-field model we use an L-BFGS optimizer (Byrd et al., 1995) and run until convergence, or
1000 iterations are reached. For the DIRECT 5-mixture model we perform stochastic gradient
descent using t =3000 Monte Carlo samples for the entropy gradient estimator in eq. (7.27).

For the DIRECT mean-field model we initialize the variational distribution to the prior.
For the DIRECT mixture models, we first run the mean-field model and then initialize each
mixture component to be randomly perturbed from the mean-field solution, and we initialize
a to the mean-field solution. We initialize the mixture probabilities to be constant.

For predictive posterior mean computations, we use the exact computation presented in
eq. (7.17) for both the DIRECT and mixture models. For REPARAM, we approximate the
mean by sampling the variational distribution using 1000 samples.

In table 7.1, we see the results of our studies across several model-types. In the left column,
the “REPARAM Mean-Field” model uses a (continuous) Gaussian prior, an uncorrelated
Gaussian variational distribution and reparameterization gradients. The right two models
use a discrete relaxation of a Gaussian prior (DIRECT) with support at 15 discrete values,
allowing storage of each latent variable sample as a vector of 4-bit quantized integers.

52000 >1 02352

Therefore, each ELBO evaluation requires 1 log-likelihood evaluations; however,

these computations can be done quickly by exploiting Kronecker matrix algebra. We compute
the ELBO as described in section 7.3.1 for the “DIRECT Mean-Field” model, and use the
unbiased gradient estimator described in section 7.4.4 for the “DIRECT 5-Mixture SGD”
model which uses a mixture distribution with » =5 components, and ¢ = 3000 Monte Carlo
samples for the entropy gradient estimator.

The boldface entries indicate top performance on each dataset, where it is evident that
the DIRECT method not only outperformed REPARAM on most datasets but also trained
much faster, particularly on the large datasets due to the independence of dataset size on
computational complexity. The DIRECT mean-field model contains mb = 30,000 variational
parameters; however, training took just seconds on all datasets, including electric with over
2 million points. The DIRECT mixture model contains mbr = 150,000 variational parameters,

and since the gradient estimates are stochastic, average training times are on the order of
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Continuous Prior Discrete 4-bit Prior
REPARAM Mean-Field DIRECT Mean-Field DIRECT 5-Mixture SGD

Dataset n d |Time RMSE Sparsity | Time RMSE SparsityHRMSE Sparsity
challenger 23 4 |8 0.515+0.284 0% 1 0.523+0.248 17% 0.525+0.246  17%
fertility 100 9 |8 0.161+0.043 0% 2 0.159+0.041 17% 0.164+0.041 17%
automobile 159 25 |5 0.425+0.2 0% 10 0.129+0.063 51% 0.122+0.056 51%
Servo 167 4 |5 0.52440.184 0% 10 0.271+0.08 35% 0.274+0.077  35%
cancer 194 33 |5 27.488+5.45 0% 4 22.954+3.09 19% 22.937+3.135 19%
hardware 209 7 |5 1.796+1.537 0% 11 0.401+0.048 51% 0.401+0.046 51%
yacht 308 6 |5 0.815+£0.17 0% 1 0.234+0.07  96% 0.225+0.082 96%
autompg 392 7 15 4.05+0.739 0% 10 2.564+0.363 31% 2.543+0.362 31%
housing 506 13 |5 3.0144+0.567 0% 10 2.752+0.405 40% 2.699+0.361 39%
forest 517 12 |5 1.3784+0.148 0% 2 1.363+0.15 17% 1.357+0.155 17%
stock 536 11 |5 0.751+0.338 0% 8 0.011+0.003 98% 0.008+0.001 98%
pendulum 630 9 |5 1.465+0.26 0% 1 1.32940.282 68% 1.3124+0.253 63%
energy 768 8 |5 78.852+21.73 0% 1 3.272+0.332 99% 2.911+0.309 99%
concrete 1030 8 |5 10.347+2.847 0% 10 5.316+0.716 82% 5.477+0.632  82%
solar 1066 10 |5 0.902+0.171 0% 10 0.787+0.192 23% 0.788+0.189  23%
airfoil 1503 5 |5 2.071+0.271 0% 11 2.175+0.349 48% 2.156+0.316  45%
wine 1599 11 |5 0.939+£0.33 0% 11 0.472+0.044 54% 0.469+0.042 54%
gas 2565 1285 0.274+0.052 0% 1 0.211+0.058 84% 0.184+0.063 76%
skillcraft 3338 19 |46 0.273+£0.029 0% 7 0.253+0.016 97% 0.253+0.016 97%
sml 4137 26 |47 0.327+0.013 0% 1 0.677+0.044 57% 0.671+0.047 57%
parkinsons 5875 20 |48 0.158+0.009 0% 1 0.651+0.034 13% 0.6134+0.083 13%
poletele 15000 26 |50 12.487+0.363 0% 10 13.65+0.348 16% 13.369+0.431 17%
elevators 16599 18 |51 0.247+0.156 0% 1 0.124+0.003 99% 0.124+0.003 99%
protein 45730 9 |58 0.642+0.006 0% 11 0.619+0.007 76% 0.618+0.007 60%
kegg 48827 20 |58 0.178+0.012 0% 1 0.222+0.009 96% 0.205+0.004  95%
ctslice 53500 385(|61 4.415+0.113 0% 2 6.063+0.122 19% 5.4784+0.137 42%
keggu 63608 27 (61 0.122+0.004 0% 1 0.139+0.004 87% 0.136+0.006  87%
3droad 434874 3 |141 11.0574+0.091 0% 2 10.493+0.105 40% 10.354+0.077 33%
song 515345 90 |[158 0.5374+0.002 0% 2 0.501+0.002 32% 0.498+0.002 28%
buzz 583250 77 |169 0.94+0.006 0% 1 1.007+0.007 82% 0.959+0.004 80%
electric 2049280 11 |500 9.2644.47 0% 1 0.575+0.032 99.6% 0.557+0.055 99.6%

Table 7.1: Mean and standard deviation of test error, average training time (in seconds), and average expected sparsity of a
posterior sample from 10-fold cross validation on UCI regression datasets.

hundreds of seconds across all datasets. While the time for precomputations does depend on
dataset size, its contribution to the overall timings are negligible, being well under one second
for the largest dataset, electric. Additionally, it is evident that posterior samples from the
DIRECT model tend to be very sparse. For example, the DIRECT models on the gas dataset
admit posterior samples that are over 84% sparse on average, meaning that over 1680 weights
are expected to be zero in a posterior sample with b= 2000 elements. This would yield massive
computational savings on hardware limited devices. Samples from the DIRECT models on
the electric dataset are over 99.6% sparse.

Comparing the DIRECT mean-field model to the mixture model, we observe gains in the
RMSE performance on many datasets, as we would expect with the increased flexibility of the
variational distribution. While we only showed the posterior mean in our results, we would ex-
pect an even larger disparity in the quality of the predictive uncertainty which was not analyzed.

In table 7.2 we consider again an unfactorized mixture variational distribution; however,
we maximize the ELBO lower bound derived in theorem 7.3. Since the ELBO gradients are
deterministic, we again use an L-BFGS optimizer for training. In addition to the 150,000
variational parameters used by the DIRECT 5-Mixture SGD model in table 7.1, computing
the ELBO lower bound involves the simultaneous optimization of a, adding 30,000 additional
optimization parameters. Observing the values in table 7.2, this model does not perform as well
as the DIRECT mixture model trained using an unbiased SGD approach, as would be expected;

however, it does train faster since its objective is evaluated deterministically, and its RMSE
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Discrete 4-bit Prior
DIRECT 5-Mixture ELBO-LB

Dataset n d |Time RMSE Sparsity
challenger 23 4 |15 0.528+0.243 16%
fertility 100 9 |15 0.16+0.04 16%
automobile 159 25 |24 0.1374+0.053 47%
servo 167 4 |24  0.282+0.067 32%
cancer 194 33 |17 23.344+3.414 18%
hardware 209 7 124 0.492+0.117 46%
yacht 308 6 |5 0.234+0.077  96%
autompg 392 7 |24  2.6241+0.339 29%
housing 506 13 |24 2.782+0.324 37%
forest 517 12 |15 1.361+0.159 16%
stock 536 11 (233 0.0114+0.002 98%
pendulum 630 9 |6 1.36+0.227 68%
energy 768 8 |5 3.116+0.218 99%
concrete 1030 8 |19 5.571+0.665 81%
solar 1066 10 (24 0.799+0.192 22%
airfoil 1503 5 |16 2.175+0.32 46%
wine 1599 11 (24  0.48640.047 50%
gas 2565 1285 0.204+0.053 84%
skillcraft 3338 19 |78 0.253+0.017 97%
sml 4137 26 |7 0.675+0.044 57%
parkinsons 5875 20 |8 0.642+0.06 13%
poletele 15000 26 (24 13.728+0.447 16%
elevators 16599 18 |5 0.124+0.003 99%
protein 45730 9 |16 0.624+0.007 76%
kegg 48827 20 |6 0.222+0.01  95%
ctslice 53500 3856 6.036+0.163 19%
keggu 63608 27 |6 0.139+0.004 87%
3droad 434874 3 |14 10.487+0.075 40%
song 515345 90 |8 0.502+0.002 31%
buzz 583250 77 |9 1.0094+0.004 82%
electric 2049280 11 |5 0.593+0.036 99.6%

Table 7.2: Using a mixture variational distribution along with the ELBO lower bound presented in theorem 7.3, we present the
mean and standard deviation of test error, average training time (in seconds), and average expected sparsity of a posterior sample
from 10-fold cross validation on UCI regression datasets.

performance is still marginally better than the DIRECT mean-field model on many datasets.

7.6 Conclusions

We showed that by discretely relaxing continuous priors, variational inference can be per-
formed accurately and efficiently using our DIRECT method. Using Kronecker matrix
algebra, the ELBO of a discretely relaxed model was computed exactly even when this
computation required significantly more log-likelihood evaluations than the number of atoms
in the known universe. Through this ability to exactly perform ELBO computations we
achieve unbiased, zero-variance gradient estimates using automatic differentiation which we
show significantly outperforms competing Monte Carlo alternatives that admit high-variance
gradient estimates. We also demonstrate that the computational complexity of ELBO com-
putations is independent of the quantity of training data using the DIRECT method, making
the proposed approaches amenable to big data applications. At inference time, we show that
we can again use Kronecker matrix algebra to exactly compute the statistical moments of the
parameterized predictive posterior distribution, unlike competing techniques which rely on
Monte Carlo sampling. Finally, we discuss and demonstrate how posterior samples can be
sparse and can be represented as quantized integer values to enable efficient inference, which
is particularly powerful on hardware limited devices, or if energy efficiency is a major concern.

We illustrate the DIRECT approach on several popular models such as mean-field varia-



CHAPTER 7. VARIATIONAL INFERENCE WITH DISCRETE VARIABLE MODELS 120

tional inference for generalized linear models and deep Bayesian neural networks for regression.
We also discuss some models which do not admit a compact representation for exact ELBO
computations. For these cases, we discuss and demonstrate novel extensions to the DIRECT
method that allow efficient computation of a lower bound of the ELBO, and we demonstrate
how an unfactorized variational distribution can be used by introducing a manageable level of
stochasticity into the gradients. We hope that these new approaches for ELBO computations

will inspire new model structures and research directions in approximate Bayesian inference.



Chapter 8
Concluding Remarks

Learning is the ability to generalize beyond training examples. In practice, many hypotheses
might be consistent with a set of training observations, and each will generalize differently.
Bayesian inference provides a principled approach to select some hypotheses over others
based on prior knowledge. In this thesis, we focused on particular modelling choices used
for Bayesian inference, namely Gaussian processes and discrete latent variable models. Both
of these modelling choices are ideal for many modern machine learning tasks. For instance,
Gaussian processes are non-parametric models whose capacity naturally adapts to the
quantity of training data, GPs are highly interpretable, and they offer powerful opportunities
to incorporate prior knowledge. Unfortunately, both Gaussian processes and discrete variable
approaches struggle to scale to complex models and to large quantities of observed data. This
thesis outlined numerous approaches to scale these methods for large scale Bayesian inference
in modern machine learning applications. This chapter summarizes the contributions of the

thesis and discusses possibilities for future research.

8.1 Overview of Main Results

First we showed that exact Gaussian process inference can be efficiently performed on problems
where training examples are (at least partially) structured on a Cartesian product grid in input
space by leveraging Kronecker matrix algebra (Chapter 3). This contribution allows Gaussian
processes to be constructed on massive image, video, spatiotemporal, or multi-output datasets
without the introduction of any approximation. We demonstrated exact GP modelling on
a spatiotemporal climate modelling problem with 3.7 million observations, a PIV fluid-flow
reconstruction problem with nearly 20 million observations, and a video reconstruction
problem with 1 billion observations; all of which are far beyond the scale of traditional GP
modelling techniques which are typically limited to tens of thousands of observations.

The use of Kronecker matrix algebra was then applied to more general, unstructured
problems using an efficient and compact Nystréom approximation (Chapter 4). Compared to

existing works that employ a Nystrom approximation for Gaussian processes, the complexity
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of the introduced approach is independent of the quantity of inducing points, allowing
a huge number to be used to obtain a globally accurate approximation. Specifically, we
demonstrated the use of 103? inducing points whereas prior techniques are limited to the use
of a few thousand inducing points.

To deal with uncertainty over Gaussian process kernel hyperparameters, we showed that a
particular class of kernels allow hyperparameter marginalization using Monte Carlo methods
whose per-iteration complexity is independent of the quantity of training data (Chapter 5).
Specifically we demonstrated a dramatic reduction in the computational complexity of GP
marginal likelihood computations from O(nm?+m?) to as low as O(m), where n is the number
of training observations, and m is the number of kernel basis functions. We also showed that
this class of kernels is highly general; for example, we showed that it has the potential to
asymptotically recover any stationary kernel.

We also introduced a variational inference procedure for approximate Gaussian processes
that admits a stochastic training procedure with a per-iteration complexity that is independent
of both the number of training examples and the number of kernel basis functions (Chapter 6).
Specifically, the evaluation cost of the variational objective is reduced to O(1) compared
to leading prior approaches that scale as O(m?). This resulted in a method that supports
accurate and high-capcity Gaussian process approximations for large datasets while being
amenable to modern computational hardware such as GPUs. We demonstrated state-of-the-
art empirical results with the use of m = 10 million basis functions while prior approaches are
limited to just a few thousand basis functions.

Finally, we considered a class of discrete variable models that can approximate a broad class
of continuous priors, such as Gaussian process priors, and has numerous runtime advantages
since posterior samples are sparse and low-precision quantized integers. While previous
techniques to construct such models rely on high-variance gradient estimators that converge
slowly, by exploiting Kronecker matrix algebra, we presented a variational inference procedure
that admits deterministic gradients with a computational complexity that is independent of
the size of the training dataset (Chapter 7). We demonstrated that this enables Bayesian

discrete variable models to be rapidly constructed on large datasets.

8.2 Opportunities for Future Research

There are many open leads for future research in the areas presented in this thesis.
Exploiting Kronecker matrix algebra. Omne of the recurring themes throughout
the thesis was the exploitation of Kronecker matrix algebra to accelerate computations.
As discussed throughout the various chapters, Kronecker matrix algebra can potentially
accelerate computations for algorithms beyond the presented contributions. For instance,
in chapters 3 and 4, Kronecker matrix algebra could be exploited for more general kernels

than the class of product correlation kernels, such as additive kernels. This would allow the
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techniques to facilitate much more general priors. Additionally, in chapter 7 it was discussed
that the variational bound computations (and indeed the marginal likelihood computations)
for any discrete variable model can be written in a Kronecker product structure but this
structure may not always be compact. The proposed model did admit a compact structure,
but other modelling choices may admit compact computations as well.

Physics-inspired priors. Gaussian processes present powerful opportunities to incor-
porate high-level prior knowledge about a function. Modelling of physical phenomena is
an instance where a practitioner may have strong prior information about a problem from
first-principles, or physics. There are opportunities to combine the techniques developed in
this thesis with powerful, physics-inspired priors to both improve predictive performance,
and to enforce physical constraints that may be needed for downstream analysis. To give an
example, the large-scale PIV reconstruction problem from section 3.5.4 considered a low-speed
fluid velocity field that can be accurately assumed to be an incompressible fluid flow. Mass
is conserved in an incompressible flow only if the flow velocity field is divergence-free; a linear
operator constraint which can be imposed on a GP prior (Narcowich and Ward, 1994). To
scale exact GP modelling using a physics-inspired prior of this sort cannot directly leverage
the techniques outlined in chapter 3; however, it can be shown that by exploiting the structure
of divergence-free kernels, an extension of the ignore-gaps approach of section 3.3.2 can be
leveraged to permit exact GP inference for large-scale PIV problems, such as the problem
considered with nearly 20 million observations. Use of physics-inspired priors such as this
would be expected to further improve reconstruction performance, and it would guarantee that
mass is conserved within the flow-field which is likely to be valuable for downstream analysis.

Extension to non-Gaussian Likelihoods. Much of the thesis develops techniques for
regression; however, many of these techniques may be extended to other learning problems.
For instance, the developed techniques may be extended to the case of supervised learning
with non-Gaussian likelihoods, which was explored in only some of the chapters.

Stochastic training with basis function subsampling. In chapter 6, a stochastic
training method was developed that only required working with a subset of basis functions at
each SGD iteration. While this technique was applied to variational inference for approximate
Gaussian process models, the same technique could be directly applied to other inference algo-
rithms or large-scale linear algebra problems. For instance, the subsampling techniques could
be applied to achieve O(1) unbiased gradient estimates for any quadratic optimization problem.

To our knowledge, no approach with these properties have been discussed in the literature.

8.3 Conclusion

Gaussian processes provide many advantages that modern machine learning methods can
benefit from. Computational scaling has been an obstacle that has prevented the large-scale

uptake of Gaussian processes in some sectors. I hope that this thesis provides additional
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direction and inspiration towards the numerous open challenges in scalable Gaussian process
inference, and Bayesian inference in general. In particular, I hope that the contributions made
in the application of Kronecker matrix algebra and stochastic training methods will inspire

new algorithms for scalable Bayesian inference.
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Appendix A

Kronecker Matrix Algebra

This section will review useful algebra properties involving Kronecker product matrices which
are used extensively throughout the thesis. As will be evident in the below identities, many
algebraic operations can be cheaply performed with great computational efficiency when
matrices have a Kronecker product structure. In the numerical studies throughout the thesis,
we showed that Kronecker matrix algebra enables algebraic operations to be performed with
large and dense matrices.

Let AeR* and let Be R™*". The Kronecker product of A and B is the km x fn matrix:

aq 1B CLLQB al’gB
A®B _ (05} 1B &2"2B (05} gB 7
ak,lB ak,QB - apB

where a; ; denotes the element of A in row ¢ and column j. This tensor product is also known
as the direct product or the Zehfuss product, which is perhaps a more appropriate name based
upon its original inventor (Henderson et al., 1983).

Below we list some general and useful properties of the Kronecker product (Van Loan, 2000).
The important aspect to note is that none of these identities require the explicit evaluation
of the Kronecker product as described in the preceding equation. This is valuable since the
explicit evaluation of the Kronecker product can be very memory intensive for large matrices.
Multiplication with a scalar:

A®(aB)=a(A®B)=(cA)®B.
Distributive and Associative properties:

(A+B)®C=(A®C)+(BKRC),
A®(B+C)=(A®B)+(ARC),
(A®B)®C=A®(BRC).
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Transpose:
(A®B) =AT®@B".

Multiplication with another Kronecker Product Matrix: Assuming that the number

of columns of A equals the number of rows of C and similarly for B and D, then
(A®B)(C®D)=AC®BD.
Matrix Inverse: Assume that A and B are square and invertible. Then
(A®B) '=A"'@B .
Cholesky Factorization: Assume that A and B are Hermitian positive-definite. Then
A®B=(U4U})®(UsUj) = (Us®Us)(Us®Us)",

where U4, Up are lower triangular matrices, each of the same size as A, B, respectively.
Consequently, U ,&®Ug is also lower triangular.

Schur Decomposition: Assume that A and B are square. Then

A®B= (QATAQ£)®(QBTBQ£> = (QA®QB)(TA®TB)(QA®QB)Ta

where Q4,Qp and T 4, T are unitary matrices and diagonal matrices, respectively, each of
the same size as A,B, respectively. Consequently, Q,® Qg and T4 ® Tp are also unitary
and diagonal, respectively.

Matrix Vector Multiplication: Assume AeR**‘, BeR™ ™ and xeR*. Then

(A®B)x =vec(A reshape(B reshape(x,n,f),l,m)) =yeR"",

where vec(-) “stacks” the rows of the matrix passed to it to turn a matrix into a vector
assuming column-major ordering and and reshape(-,«,3) reshapes the matrix passed to it to
size o x B using column-major ordering. Please see (Saatgi, 2011, algorithm 15) for an efficient

matrix-vector product algorithm that can easily take advantage of BLAS level 3 functionality.



Appendix B

Regularization Kernel Method

for Multi-dimensional Grids

This appendix discusses interesting connections and extensions of the work in chapter 3 for a
regularization (frequentist) perspective, as opposed to a Bayesian perspective. This content is
placed in the appendix since the focus of the thesis is on a Bayesian perspective; however, we
believe there is merit in bridging the connections between these multiple lines of research. In
this appendix we re-use notations and problem setup from chapter 3 unless otherwise specified.
Specifically, we are considering the scenario when the inputs of a regression problem our struc-
tured on a multi-dimensional Cartesian product grid, with some missing responses (or “gaps”).
We discuss here an alternative regularization (frequentist) perspective where the function
of interest is assumed to belong to a reproducing kernel Hilbert space (RKHS) (e.g., Scholkopf
and Smola (2002), Vapnik (1998), and Wahba (1990)). The predictive model is of the form

N

Fx)~ f(x) =) aiki(x), (B.1)
i=1
where k;(x) = k(x,X;), k(-,-) is the radial basis function (RBF) kernel, and «; for i=1,2,...,
denotes the RBF weights.

Considering ridge regression, the model is derived as the minimizer of the regularized

N

function
N

> (P - ) +o2a?, (B.2)

i=1

which we can formulate as

a=arg min|[K&—y][3+0*[[€]]3, (B.3)
¢eRN

where ae RY is the vector of basis function weights, Ke RV*¥  is the symmetric and positive
definite Gram matrix formed by the kernel evaluations such that k;; = k(x;,x;), x; is the ith

training point inputs, y e RY is the vector of training responses, and o2 >0 is the ridge regular-
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ization factor which prevents overfitting and accounts for any noise which corrupts the training

data. It can be shown that the preceding optimization problem has the analytic solution
(K+0’Iy) 'y =a, (B.4)

and since the Gram matrix K is generally dense, it is evident that training nominally
requires O(N?) time, a prohibitive expense for large N. If; however, the data is struc-
tured on a Cartesian product grid and the kernel has a product correlation structure, i.e.,
k(x;,x;) = ]_[7:1 ki(xi,z;), then K=®j:1Kj admits the Kronecker product decomposition
along with its algebraic benefits as discussed in section 3.2. Further, using the “gappy”

notation from section 3.2, we can rewrite our non-gappy training problem of eq. (B.4) as
(Kxx+0’Iy) 'yx=ox, (B.5)

where we once again observe that Kx x € RNM*N does not contain a Kronecker product structure
due to the presence of the gaps in the data. Note that this problem is identically structured
to the linear system of equations addressed in sections 3.3.1 to 3.3.4 and thus the techniques
developed therein can be directly applied.

It is evident that the present approach is closely related to the fast Gaussian process
inference outlined in chapter 3 where the same reproducing kernel is used to model the
process covariance. In-fact the model structure of the regularization model and the GP model
posterior mean are mathematically identical, a more detailed discussion of the connections
between these models can be found elsewhere (Poggio and Girosi, 1990; Rasmussen and
Williams, 2006; Wahba, 1990). Due to this connection, many of the techniques developed in
chapter 3 can easily be applied to the regularization model presented here, the difference lies
in how kernel hyperparameters, 0, and the regularization factor, o2 are selected. While for
the Gaussian process model of chapter 3 this was done by maximizing the marginal likelihood,
here consider an alternative generalization metric based on cross validation. Specifically, we
minimize the commonly employed generalized cross validation (GCV) error metric (Golub

et al., 1979) which can be computed for a full problem (without gaps) as

2
i% o? 72
M=\ Tyi+0? ‘
1N g2 2
[Mz§ Tii+02]

where the square is computed elementwise, z = (Q”y) e RM T=®?:1Tj, Q=®?21 Q,;eRM*M

are the diagonal and unitary Kronecker product matrices defined in eq. (3.5), and once again,

0(0,0%) =

, (B.6)

0,02 are the kernel shape parameters and the ridge regression parameter, respectively. We

choose the hyperparameters {8,062} to be a minimizer of our generalization error metric, £.
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It can be shown that eq. (B.6) can be rewritten as

6(00 ) 2Ny (K+O-2IM)71y
Te[(K+021,)~ 1]

(B.7)

where Tr[-] computes the matrix trace of the argument. Rewriting this for the gappy case gives

o2 yx(Kxx+0%Iy) 'yx
0(0,0%) = NT (Ko 1oL (B.8)

which can be efficiently computed using the tools outlined in chapter 3. Firstly, observe
that the numerator contains the solution of a linear system identical to eq. (B.5) and can
therefore be quickly solved using the efficient techniques of sections sections 3.3.1 to 3.3.4.
Secondly, note that using the Nystrém approximation of the eigenvalues of Kx x (as discussed

in section 3.4), we can rewrite the denominator as

N
Tr [(Kxx-i—O' IN Z/\N_FO-Q%Z (Bg)

1
M
i=1""17 i

NA 2’
1N TO

where AV, i=1,..., N are the eigenvalues of Kxx, and AM is the i*" largest eigenvalue of
K=® 51K which can be computed very rapidly in O(dM %) time using Kronecker matrix
algebra. In this way, a regularization model can be efficiently constructed by re-applying the

efficient techniques from chapter 3.



Appendix C

Re-Weighted Basis Kernel
Log-Marginal Likelihood Derivatives

This section derives the log marginal likelihood (LML) derivatives presented in eq. (5.5).

Calculating the m+1 derivatives of the log marginal likelihood (LML) with respect to {~y,0%}

using finite difference approximations would require O(m?*) time. We show how all these

derivatives can be analytically computed in O(m?) time. We also discuss how the use of

transformed basis functions (i.e., replacing ® with &)) allows derivative computations in O(m).
The LML can be written as follows:

IOgPI'(Y|0, 027 X) = _%10g<2ﬂ-) - %lkog’KX,X"i_O'zInJ_% yTa ’

e .
Complexity Data Fit

where we use the shorthand e = (Kxx + ¢*I,) 'y € R". For clarity, we will derive the
gradients of the complexity and data-fit terms separately (interpretations of these terms are

discussed in section 2.3).

Data-Fit v Derivatives First we show how the derivative of the data-fit term can be computed
within O(m?) time
8yTa T &‘KXX

- — (T o)
o “ i “ (¢Z a)

where a = (KX,X + UQIn)_ly e R™, we make the observation that M;% = ¢,¢], and the

square, (+)?, is taken element-wise. We can vectorize this to compute all data-fit derivatives

oy’
oy

——(®"a)’=—o 4 (®Ty— AP '®y)”,

where A = ®7® e R™*™ and ®’y e R™ are both precomputed before LML iterations begin,
and P = 02S+ A € R™ ™ is also required to compute the LML (see eq. (5.4)) so it is already

computed and factorized. Evidently, the data-fit term derivatives can be computed in O(m?)
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at each LML iteration.

Complexity Term v Derivatives Now we derive the complexity term gradient which is written
as follows:
510g|Kx,x + 0'21”|
i

~10Kx x
Vi

=Tr (KX,X + UQIn)

Using ﬂ;% =@, q,’)iT and the cyclic permutation invariance of the trace operation, we get

8log|KX7X + 021n| B

~1
o7s ¢¢T (KX,X+UZIn) P;.

Using the matrix inversion lemma, the preceding equation becomes

(?log|KX7X + 021n| B
Vi B

o2 (¢ZT¢Z - ¢z‘T(I)P_1<I)T¢z’) =07 (aii —a?P_laz') .
Evidently, the complexity term derivatives each require O(m?) time so all m derivatives can
be computed in O(m?3). We can write the vectorized computation as

(?log|KX7X + 021n| .
o~y B

o 2[diag(A) - (A@PA)"1,],

where it is evident that the dominating expense P7'A is also required for the data-fit

derivatives.

Noise Variance Derivatives We show here how the derivatives of the LML with respect to o2

can be computed in O(n+m), as follows:

oyt (0?1,
o az—aT (o )a:—aTa=—0_4(yTy—2yT<I>P’1<I>Ty+yT<I>P’1AP’1<I>Ty),
0o? 0o?
and
olog|K 1, _10(0%1,
el ’:Tr((KX,X+a2In) 10(22))=Tr<a‘2[1n—<I>P‘1<I>T]>=a‘2[n—Tr(P_1A)].
o o

Evidently the first relation can be computed in O(m?) if y'y, ®"y, and A are precomputed,
and the second relation can be computed in O(m) since the matrix product P~' A has already

been explicitly computed to compute the derivatives with respect to ~.

Final Expressions Combining the derived expressions for the derivatives of the LML with

respect to the m + 1 hyperparameters {, o?}, it is evident that all computations can be
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performed in O(m?). We can write the final expressions as follows:

OLML  (r—AP7'r)” diag(A) - (AOP'A)"1,

o~y 204 202 ’
OLML yTy-2r"P'r+1r"P'AP 'r n-Tr(P'A)
o2 204 202 ’

where r = @’y e R™. If we transform the basis functions by replacing ® with ® then it is
~T ~

evident that the derivative computations can be made in O(m) since both A=® ® =1 and

P =02S+ A will be diagonal.



Appendix D

Additional Content: Quadruply

Stochastic Gaussian Processes

This appendix contains additional content for the quadruply stochastic Gaussian pro-

cesses (QSGP) approach presented in chapter 6.

D.1 Control Variates: Additional Details

D.1.1 Sparse Unbiased Gradient Computation

The gradient of the expectation of the control variate outlined in proposition 6.3 can be directly
differentiated to give the exact (dense) gradient; however, we would like sparse unbiased
gradients with respect to the parameters p; ; that are updated at an SGD iteration. Simply
taking the relevant terms from the dense gradient and ignoring the others would introduce bias
but we can scale this sparsified gradient appropriately to give unbiased gradients. Because the
gradient is sparse with just \Iuﬂ < 2m non-zeros, this sparsified gradient needs to be scaled by
IIijl This can be implemented in automatic differentiation software to give the correct zeroth

derivative and an unbiased estimate of the first derivative as follows:

liuj| o*n liuj| ) o*n

m_n_aMT3® 4 stop  gradient ( <1 — i) La(t)Ta(t)) ,

where the argument of stop gradient does not contribute to the gradient during its

computation.

D.1.2 Additional Control Variates

In this section we outline additional control variates that can be used for the various terms
in theorems 6.1 and 6.2. Note that all these control variates can be used to reduce gradient
variance without introducing bias and without introducing dependence on n or m in the cost
of an SGD iteration.
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We begin by presenting a control variate for the term g—z/,l,JT S;ip; in theorem 6.1. The
goal is ultimately to find a low-rank approximation to S which depends on the form of the
matrix. As a useful example, the popular class of inducing point kernel approximations give a
prior precision matrix S that is a kernel covariance (or Gram) matrix evaluated on the set of
inducing points. For notational convenience, consider the set of inducing points to be identical
to the training set points in which case n=m and S =K(X,X). In the following expression, we
present the negative control variate (first term) plus the control variate’s expectation (term

two) that can be simply added to the £, estimator in theorem 6.1
— 2!l K(X;, U)K (U,U) " K(UX;) s+ " K(X,U)K(U,U) " K(UX) s,

where U is a set of n support points in the d-dimensional input space, and the notation
K(X,U)eR™™ denotes the kernel cross-covariance matrix between the sets X and U such that
the 7jth element of this matrix is k(x;,u;). Clearly this expression has an expectation of zero
and so simply adding it to the stochastic estimator in theorem 6.1 does not introduce any bias.
This control variate has the capacity to reduce variance of the £, estimator provided there is
correlation between the elements of S =K(X,X) and K(X,U)K(U,U)"'K(U,X)eR™*™. This
matrix is a Nystrom approximation of K(X,X), a low rank kernel approximation that is widely
used in the sparse GP community for kernel approximation, and preconditioning (Cutajar
et al., 2016; Evans and Nair, 2018c; Peng and Qi, 2015; Snelson and Ghahramani, 2006;
Williams and Seeger, 2001). The size of the set U should be much smaller than n and is often
selected randomly from the training set X; however, a wealth of other selection strategies
have been developed (Belabbas and Wolfe, 2009; Drineas and Mahoney, 2005; Gittens and
Mahoney, 2013; Kumar et al., 2012; Li et al., 2016a; Musco and Musco, 2017; Smola and
Schoélkopf, 2000; Wang and Zhang, 2013; Zhang et al., 2008). Empirically, it has been found
that this matrix approximation is quite accurate (Evans and Nair, 2018¢; Musco and Musco,
2017), and we find that this control variate dramatically reduces variance in practice.

Unfortunately, naive evaluation of the expectation of this control variate (the second term
in the previous equation) requires O(n)=0(m) computations at each iteration. However,
when sparse updates are performed at each SGD iteration, an approach similar to that outlined
in proposition 6.3 can be used to decrease the per-iteration computations to O(1) when using
this control variate. This control variate was used in the empirical studies of table 6.3.

We additionally note that a nearly identical control variate to the one outlined in the
previous equation can be derived for the terms g—zCJT . Sj,ici,r in theorem 6.2 by simply replacing
p with ¢z .

2nm
o2nm

We can also easily develop a control variate for the term — y%(I)z :pu; from theorem 6.1

as follows:

2m I 2 1T
O'mei H;_Fb K,
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where the negative control variate is the first term, the expectation of the control variate is the
second term, and b= ®”7y e R™ is a vector that is precomputed before SGD iterations begin.
Similarly to proposition 6.3 it is possible to make the cost of SGD iterations independent of n
and m with this control variate; however, the precomputation of b costs O(nm) which could
be prohibitive. To reduce this cost the vector b could be approximated. We did not explore

the use of this control variate in our experiments.

D.1.3 Control Variates with Empirical Bayes

If empirical Bayes is being performed, then ® is likely to change during optimization and
so the basis functions used in eq. (6.3) and in proposition 6.3 should be fixed to the basis
functions at initialization. This same approach can be extended to the additional control

variates discussed above.

D.2 Predictive Posterior Augmentation

Although the QSGP inference procedure allows m to be very large, it is still finite, and this
degeneracy can negatively impact the quality of the predictive posterior variance. In this
section we discuss augmentation to address this where a radial basis function is added to the
QSGP model at each test point when evaluating the predictive variance (Quinonero-Candela
and Rasmussen, 2005).

The results of this section are not presented in the main body of the thesis since the proposed
augmentation requires a specific choice of kernel approximation, i.e., a specific choice of ® and
S. Namely, the augmentation results assume that an inducing point approximation is made
such that ¢; ; = k(x;,2;) and s; ; = k(z;,z;), where z;€R? for i =1,...,m are the inducing point
locations. For ease of notation in our presentation, we assume that n = m inducing points
are centred on all training points such that x; =z; for all : = 1,...,n. We will see that this is
a sensible choice since augmentation requires the storage of the training dataset at test time,
and predictive posterior variance computations using augmentation require O(n) time anyway,
regardless of m. This approach can be easily generalized for arbitrary inducing point locations.

The following result demonstrates how augmentation can be implemented affordably.

Proposition D.1. The proposed model with augmentation gives the following predictive

variance ) )
0k (X, X))

k(x4 )Tk (x4 ) + 02k (x4, X5)

where it is assumed that there is no posterior correlation between the augmented basis function

V[y*] = k(X*)TEk(X*) +

and the basis functions in K.

Proof. Let X, denote the set of n training points with an additional test point x, = x,11
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appended. We will use X, as inducing points at test time so that

@:[K(X,X) k(x*)], and S:[K(X’X> k() ]

k(x)?  k(x,Xy)

We will also denote 3',C' e R*1*"+1 55 the posterior covariance, and its respective Cholesky
parameterization. We can modify Ly from eq. (6.2) to give L%, as for this augmented model

as follows:

+

1
L= —28um((<I>C')2> log|2 !—l—tr SE Z <I>T<I>+UQS) —2logd!.,
o r=1

The assumption of no posterior correlation between the augmented basis function and the

basis functions in the columns of K means that ¢/, ,, ;=0 for i=1,2,...,n, giving

1
/Z = EZ (Cllzn,lzn) 7210gC;’L+1,n+1 + ; (k(X*)Tk(X*) JrO-Qkx*w’C*) Cg+1,n+17

and consequently the first n rows and columns of C’ should be selected to minimize Ly, from
eq. (6.2) (and also theorem 6.2) without any influence from the test point x,. Therefore, the
augmented and non-augmented predictive posterior variance differ only by the contribution

of ¢, 41 41+ Setting the derivative of Ly, with respect to ¢, ,,,; to zero and solving gives

9 2

g Cn+1,n+1

0-2
/ ==
Cntlnt1 \/k(x*)Tk(x*) +O’2/€x*,x* )

and using the square of this value as the posterior variance for the augmented basis function

completes the proof. O
We make the following additional observations about the use of this augmentation strategy.
Remark D.1. Augmentation cannot decrease the predictive posterior variance.

Remark D.2. Augmentation will cause the predictive posterior variance to revert to the prior

variance far from the training data (where k(x,) approaches 0).

These follow from the facts that the second term in proposition D.1 must be non-negative,
and that the value of the second term approaches the prior variance k(x.,X.) as k(x)
approaches 0, respectively.

Further, the use of augmentation requires negligible additional work at test time since
k(x,) is already required for both the predictive mean, and the non-augmented predictive
variance. The following study demonstrates how augmentation can improve the quality of

the predictive variance far from the training data.
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=" — Posterior Mean
—————— Exact GP
—————— Full C, Non-Augmented
Mean-Field Augmented \
Mean-Field Non-Augmented R

Figure D.1: Comparison of predictive variance between an exact GP, and a QSGP model with ® =S = K(X,X) and both with
and without augmentation.

Augmentation Visualization

Figure D.1 plots the predictive posterior mean and standard deviation of an exact GP, as well
as a QSGP model with ® = S = K(X,X) and both with and without augmentation. The
dataset was generated using the sinc function with n =20 points, corrupted with independent
Gaussian noise. Note that all models have an identical posterior mean, and we use the expo-
nentiated quadratic kernel outlined in eq. (2.28). Around the training data the augmented and
non-augmented models give a nearly identical predictive variance that agrees well with the vari-
ance of the exact GP. As the non-augmented model extrapolates, its predictive variance shrinks
which is a highly undesirable trait of the degeneracy of the approximate GP. However, the pre-
dictive variance of the augmented model grows as it extrapolates, and while it does not grow
as fast as the exact GP, it similarly returns to the prior variance, as expected from remark D.2.
Figure D.1 also shows the predictive variance where a dense lower triangular (or “full”) C is con-
sidered. Note that due to the conjugacy of the Gaussian prior, this model gives exact inference
and evidently the results are better than the models constructed with a mean-field assumption
where the training data ends. However, far from the training data, the posterior variance
shrinks back to that of the mean-field model. With augmentation, the full C model would be
the closest to the exact GP; however, this model is not practical for large m. A mean-field or

chevron Cholesky structure with augmentation could provide a compromise for large models.

D.3 Site Projection Notes

We can re-write eq. (6.5) as

3

Eq(w )[logPr y\XW Z (2]0,1) [1Ogge(¢g Btz 24”5 )]

and in this section we will outline what the form of logg, is for various likelihoods.
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D.3.1 Logistic Likelihood

Here we first consider Bayesian logistic regression and model the class conditional distribution

using

Pr(y=1|wx) =sig(w" ¢(x))

where sig(z) is the sigmoid function, and we consider y € {—1, 1}" to

_ 1
T ltexp(-z)
be the binary training labels. Using the symmetry property of the logistic sigmoid
Pr(y=—1|lw,x)=1-Pr(y=1|w,x) =sig(—w’ ¢(x)) and assuming the data are i.i.d., we can

write the log-likelihood of the training set as
logPr(y|X,w) = log (Sig(yecﬁz,;W)) ,

where it is immediately clear from eq. (6.4) that g,(x) = sig(yex). It is therefore evident that
log g¢(x) = —log (1 + exp(—yex)) which is a vertically flipped (and potentially horizontally
flipped) softplus function, a function is commonly used as a continuous relaxation of a rectified
linear unit (ReLU). Additionally, it is clear by inspection that —log (1 + exp(—ygx)) is a

concave function in z such that the result in theorem 6.3 holds for this likelihood.

D.3.2 Laplace Likelihood

We now consider Bayesian regression using a Laplace likelihood and assume the data is i.7.d.

to give the training set log-likelihood

n

logPr(y|w,X) =) 1og L(ye|¢¢: w,b) 2 g(2b) ——\ye—ﬁbe wl,
=1 =1

where b > 0 is the scale parameter. It is immediately clear from eq. (6.4) that
log g¢(x) = —log(2b) — #|ye — x| which a shifted absolute value function. Additionally,
it is clear by inspection that log g¢(x) is a concave function in z such that the result in
theorem 6.3 holds for this likelihood.

The expectation over z in eq. (6.5) can be computed analytically for this site projection,
please refer to (Challis and Barber, 2013) for details.

D.3.3 Gaussian Likelihood

We now consider Bayesian regression using a Gaussian likelihood and assume the data is

distributed i.7.d. to give the training set log-likelihood

n

- 1
logPr(y|w,X) = > log N (ye|¢.w,0%) = Z—§1Og(27mz) -
= =1

1
T‘Q(W—@,:W)Q,
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quadratic. Additionally, it is clear by inspection that loggs(x) is a concave function in x such
that the result in theorem 6.3 holds for this likelihood.

The expectation over z in eq. (6.5) can be computed analytically for this site projection,
please refer to (Challis and Barber, 2013) for details.

where it is immediately clear from eq. (6.4) that logg,(z) = —3log(2mo?) (y¢—x)? which a



Appendix E

DIRECT Bayesian Neural Networks

This appendix extends the DIRECT approach of chapter 7 to the case of a Bayesian neural
network. To demonstrate DIRECT computation of the log-likelihood for a Bayesian neural
network we will first perform a forward-pass through the neural network from top to bottom;
however, unlike how a forward-pass is conventionally conducted in literature where the
network is fixed at a specific location in the hypothesis space, we will simultaneously evaluate
the neural network at all locations in entire hypothesis space. Consequently, a forward-pass

b

through the neural network with our n-point training set will give us m’ x n values.

Nomenclature and Neuron Structure

At all points in the forward-pass we can represent the internal (or final) state of the neural
network with a special structure which is a sum of Kronecker product vectors as follows for

i=1,...,(number of neurons in the layer), and [=1,...,n,

uz(z) = Z%‘l@g%, (E.1)

where U® = {u"}n e R™ " 4l e R™" denotes the internal state of the ith neuron of the
current layer, and both G@ = {{g§2 b Yy e Ribxm gglk) e R™ and C e R"" change as we
move from one layer to the next. h depends on the network architecture and it is constant
throughout a layer but grows as we observe deeper layers. Using this nomenclature it is
evident that we can compactly represent the internal state of any location within the neural
network while we compute our forward pass.

The following image denotes the structure of a neuron that we will use in our neural network.

147
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Latent Variables

For clarity of illustration, we will not discuss the bias term although this can be easily added
by associating a latent variable with a layer input that is fixed to unity. In our discussion, we
will break the computation of the neuron into two stages; the first will involve multiplication
of the layer inputs with the latent variables as well as the summation, and the second stage

will involve passing this summation through a non-linear activation function.

Multiplication with Latent Variables and Summation

Our computational neurons begin by multiplying the layer inputs with a specific latent
variable and then summing up these values. Assuming we are conducting a forward-pass
moving deeper into the network and are currently at the “layer inputs” location in our
computational neuron figure, the internal state for the ¢th input is denoted by U® e Rm"xn
whose structure is defined in eq. (E.1). We must multiply this state by all possible values of
the corresponding latent variable, which we will assume is indexed as the pth of our b latent

variables. We can easily perform this multiplication as follows for [=1,....n

e <2c]l(?gjk)®w [p]", (E2)
=§le(§g§2) (gl ow,)® (égﬁ) ;Cyl@gﬂw (E.3)

k=p+1
where ® denotes element-wise multiplication, and we have taken advantage of the Kronecker
product structure of the rows of W as depicted in eq. (7.3). Finally, the summing operation
is straightforward for our computational neuron. It simply involves summing the multiplied

inputs from each layer input as follows:

num. inputs h

Z Zcﬂ@gj (E.4)

At this point we would update h, G and C to convert this double summation into a single

summation before passing through the non-linear activation function, as we will discuss next.
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Quadratic Activation

We will use a quadratic activation function for our neural network. Any other non-linear
activation could be used; however, we choose the quadratic since it allows a more compact rep-
resentation of internal state of the network to be maintained, i.e., it allows for a small A versus
other non-linear activations. Again assuming that the current state at the ith neuron is defined

by U@, the output for the activation function for the ith neuron is as follows for [=1,...,n

o=l o= (Lo ) o (S ) (©5)
Jj=1 =

j=1 k=1

h b
:Z ?@ ik Qg]k +2ZZCJ Cplg]k @gpka (E.6)

j=1p=1

and at this point we would update h, G and C to convert this double summation into a single

summation to represent the internal state compactly before moving deeper.

Forward-Pass Algorithm

Using the previously defined operations, we can summarize the forward-pass procedure in algo-
rithm forward_pass. Note that algorithm forward_pass is simplified for clarity of presenta-
tion. The computations involved could be performed far more efficiently and in a more stable
manner. For example, the vast majority of entries in the G matrices are unity, so identifying
this could massively decrease storage and computational requirements. Additionally, C evi-
dently has a Kronecker product structure which could be carefully exploited to yield benefits for
very wide neural networks. For stability, all matrices could be represented by storing both the
sign and logarithm of all entries. For deep networks, this could be advantageous to avoid preci-

sion loss. Nonetheless, we will proceed with the algorithm as presented, for purposes of clarity.

ELBO Computation

Computation of the ELBO will proceed similarly to the GLM regression model in section 7.3.1;
however, there are several differences since we no longer have constant basis functions, so our
state representation is more complicated. We will again assume a Gaussian noise model for
the observed responses and will again place a prior over the Gaussian variance. We can then
modify eq. (7.10) which focuses on the ELBO term related to the log-likelihood as follows:

(qa®q)Tlog€=——q010ga —%(qg (" {(y—Uli:]")" (y=Uli:]")}2y), (E.7)

where we assume that we have already conducted algorithm forward_pass such that the
state U represents the output of the neural network. We will now focus on computing the

inner product involving the variational distribution over the w variables, q, which we can
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Algorithm forward_pass Perform a forward pass for through the neural network using the entire training
set and simultaneously computing the outputs for all m = m® points in the hypothesis space. mult_var
multiplies the current state with the appropriate latent variable as is done in eq. (E.3), neuron_sum computes
the neuron sum as is done in eq. (E.4), and activation computes the non-linear activation function as is done
in eq. (E.6). All the pseudo-functions defined take G and/or C and perform the necessary computations with
those inputs. We omit latent-variable indexing values for clarity of presentation.

Input: XeR*"
Output: CeR" " & GeRM¥*™ which define state UeR™ *" in eq. (E.1)
Cc=X, G(i)zones(lxbxm),z'=1,...,d
for each layer do
C neuron Sum({c}num 1nputS) ]-num. inputs@c
for j =1 to num. neurons in layer do
for i=1 to num. inputs to layer do
G'® =mult_var(G(i)) multiplication with the appropriate row of W
end for

G’ —neuron_sum(G'(Y ... G/(mum- inputs)y

if not last layer then ‘
&Y E—activation(@” &)
end if
end for

sum operation for the current (jth) neuron

C= (~3, GU) = (N}(j) ,j =1,...,num. neurons in layer update variables

end for
G=GW only one neuron in the last (output) layer, so remove indexing

break into three terms as follows:

a {(y—=Uli,:]") (y—Uli: ")}, =
yTy_QqT{yTU[iﬂ:]T}ﬁl+qT{U[i7:]U[i’:]T i1 (E8)

for which the first term is trivial to compute as written since it does not depend on the latent
variables. We now demonstrate how the second and third terms can be computed, recalling we
assume q is a mean-field variational distribution (although we can extend beyond mean-field
using the techniques discussed in section 7.4). Considering the second term in eq. (E.8), we

can write

a"{y"U[i,.]"}2 =q (Zn] kZCﬂC@gU):i(iykcﬂﬂ>ﬁq?gijv

=1 = j=1 Mk=1 i=1

h
= ijl—[qzrgij? (E.9)
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where we have used the short-hand notation p = {>.7_ yxc;x}; € R". Finally, considering the
third term in eq. (E.8), we can write

n h h
T{U[ ] 7. :nl: TEUZQI,I% TZZZCﬂCkz ngngl)a (ElO)
i= ].] 1k=1
h n
- ZZ (chicki> HQlT (g081); (E.11)
J=1k=1 Mi=1 =1

ZZ%H% (8108k) (E.12)

where we define V. = {37 | cjicki}in € RP*". Substituting eq. (E.9) and eq. (E.12) into
eq. (E.8), we can now compute the inner product between the variational distribution and
the log-likelihood in eq. (E.7). The other terms required to compute the ELBO can be seen
in eq. (7.9), and the computation of these other terms do not differ from the case of the
generalized linear regression model. So, we can now tractably compute the ELBO for our
DIRECT Bayesian neural network.

We can pre-compute the terms y’y, p, and V before training begins (since these do not
depend on the variational parameters) such that the final complexity of the DIRECT method
is independent of the number of training points, making the proposed techniques ideal for mas-
sive datasets. Also, it is evident that each of these pre-computed terms can easily be updated
as more data is observed making the techniques amenable to online learning applications. If we
assume a neural network with ¢ hidden layers and an equal distribution of latent variables be-
tween layers, the computational complexity of the ELBO computations are O(¢m(b/€)*). This
can be seen by observing eq. (E.12) and noting that h=0((b/¢)*), and that only O(¢) of the

vectors in {gjl}lb=1 are not unity for any value of j =1,...,h, allowing computations to be saved.
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